Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author : Steven L. Brunton
Publisher : Cambridge University Press
Page : 615 pages
File Size : 12,58 MB
Release : 2022-05-05
Category : Computers
ISBN : 1009098489
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author : J. Nathan Kutz
Publisher : SIAM
Page : 241 pages
File Size : 18,72 MB
Release : 2016-11-23
Category : Science
ISBN : 1611974496
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Author : Philip Holmes
Publisher : Cambridge University Press
Page : 403 pages
File Size : 47,57 MB
Release : 2012-02-23
Category : Mathematics
ISBN : 1107008255
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.
Author :
Publisher :
Page : 400 pages
File Size : 40,34 MB
Release : 1948
Category : Mechanics, Applied
ISBN :
Author :
Publisher :
Page : 500 pages
File Size : 15,22 MB
Release : 2002
Category : Mechanics, Applied
ISBN :
Author : Annick LESNE
Publisher : Springer Science & Business Media
Page : 406 pages
File Size : 31,73 MB
Release : 2011-11-04
Category : Science
ISBN : 364215123X
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Author : Peter Davidson
Publisher : Oxford University Press, USA
Page : 647 pages
File Size : 40,5 MB
Release : 2015
Category : Mathematics
ISBN : 0198722591
This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth
Author : Alexander V Getling
Publisher : World Scientific
Page : 256 pages
File Size : 45,3 MB
Release : 1998-03-06
Category : Science
ISBN : 9814498971
This invaluable book presents a concise but systematic account of the formation of spatial flow structures in a horizontal fluid layer heated from below. Flows of this type, known as Rayleigh-BĂ©nard convection, show important features of behaviour inherent not only in various hydrodynamic-instability phenomena but also in nonlinear pattern-forming processes in other contexts. The book describes the basic methods of investigating convection patterns, and the types of two- and three-dimensional flows, pattern defects, and sequences of convection-regime changes.The author pays special attention to the question of how various factors (mainly reducible to initial and boundary conditions) determine the shapes and sizes of the structures which develop. In this way, the role of order and disorder in flow patterns, as a factor strongly affecting the character of the evolution of structures, is revealed. The presentation emphasizes the physical picture of these phenomena, without excessive mathematical detail.
Author :
Publisher :
Page : 682 pages
File Size : 41,24 MB
Release : 1999
Category : Aeronautics
ISBN :
Author :
Publisher :
Page : 836 pages
File Size : 36,51 MB
Release : 1994
Category : Aeronautics
ISBN :