Identifying Cis-regulatory Elements and Trans-acting Factors that Activate Transcription in the Suspensor of Plant Embryos


Book Description

Seed crops, such as corn and soybean, are a major source of food for human and animal consumption. Understanding how genes are regulated in seeds is essential for the future development of genetically engineered seed crops that could significantly augment the food supply available for a rapidly growing human population. Given the importance of understanding the processes controlling seed development, it is surprising that the gene regulatory networks operating in seeds remain largely unknown. I have been using scarlet runner bean (SRB; Phaseolus coccineus), a close relative of soybean, to characterize a gene regulatory network active during early embryo development. Specifically, I have focused on gene activity in the suspensor, a specialized embryonic region involved in synthesizing and transporting nutrients to the growing embryo. To identify suspensor cis-regulatory sequences, I performed promoter dissection experiments on the SRB G564 gene, which is expressed in the suspensor early in embryo development. A 54-bp DNA fragment within the G564 upstream region is sufficient for suspensor-specific transcription in transgenic tobacco and Arabidopsis, indicating the suspensor transcriptional machinery is conserved in flowering plants. Mutagenesis of the 54- bp fragment identified five suspensor cis-regulatory elements: (i) three 10-bp motifs with the consensus 5'-GAAAAGCGAA-3', (ii) a Region 2 sequence 5'-TTG(A/G)(A/G/T)AAT-3' and (iii) a Fifth motif 5'-(A/G)AGTTA-3'. The Fifth motif sequence is a predicted MYB transcription factor binding site. A yeast one-hybrid screen identified three MYB transcription factors that bind to the 54-bp fragment and are expressed in the suspensor of Arabidopsis. Promoter deletion and mutagenesis experiments uncovered that sequences similar to these three types of suspensor motifs also activate suspensor transcription in the SRB GA 20-oxidase gene, which encodes an enzyme required for synthesis of the phytohormone gibberellic acid. The SRB G564 and GA 20-oxidase genes are activated by the same suspensor cis-regulatory elements and thus comprise a suspensor gene regulatory network, which is activated shortly after fertilization by transcriptional machinery that is conserved in the suspensors of flowering plants.







Molecular and Cellular Plant Reproduction


Book Description

Plant reproduction is essential not only for producing offspring but also for increasing crop quality and yield. Moreover, plant reproduction entails complex growth and developmental processes, which provide a variety of opportunities for elucidating fundamental principles in biology. The combinational employment of molecular genetic approaches and emerging technologies, such as florescence-based imaging techniques and next generation sequencing, has led to important progresses in plant reproduction using model plants, crops, and trees. This e-book compiles 31 articles, including 1 hypothesis and theory, 4 perspectives, 12 reviews, and 14 original research papers. We hope that this E-book will draw attention of all plant biologists to exciting advances in the field of plant reproduction and help solve remaining challenging questions in the future. We wish to express our appreciation to all the authors, reviewers, and the Frontiers editorial office for their excellent contributions that made the publication of this e-book possible.




Functional Identification and Characterization of Cis-regulatory Elements


Book Description

Transcription is regulated through interactions between regulatory proteins, such as transcription factors (TFs), and DNA sequence. It is known that TFs act combinatorially in some cases to regulate transcription, but in which situations and to what degree is unclear. I first studied the contribution of TF binding sites to expression in mouse embryonic stem (ES) cells by using synthetic cis-regulatory elements (CREs). The synthetic CREs were comprised of combinations of binding sites for the pluripotency TFs Oct4, Sox2, Klf4, and Esrrb. A statistical thermodynamic model explained 72% of the variation in expression driven by these CREs. The high predictive power of this model depended on five TF interaction parameters, including favorable heterotypic interactions between Oct4 and Sox2, Klf4 and Sox2, and Klf4 and Esrrb. The model also included two unfavorable homotypic interaction parameters. These homotypic parameters help to explain the fact that synthetic CREs with mixtures of binding sites for various TFs drive much higher expression than multiple binding sites for the same TF. I then found that the expression of these synthetic CREs largely changes as ES cells differentiate down the neural lineage. However, CREs with no repeat binding sites drove similar levels of expression, suggesting that heterotypic interactions may be similar in the two conditions. In a separate set of experiments I interrogated the determinants of expression driven by genomic sequences previously segmented into classes based on chromatin features. A set of these sequences was assayed in K562 cells. As expected, we found that Enhancers and Weak Enhancers drove expression over background, while Repressed elements and Enhancers from another cell type did not. Unexpectedly, we found that Weak Enhancers drove higher expression than Enhancers, possibly based on their lower H3K36me3 and H3K27ac, which we found to be weakly associated with lower expression. Using a logistic regression model, we showed that matches to TF binding motifs were best able to predict active sequences, but chromatin features contributed significantly as well. These results demonstrate that interactions between certain combinations of pluripotency TFs, but not all combinations, are important to transcriptional regulation. Furthermore, chromatin modifications can still contribute to predictions of expression even after accounting for binding site motifs. Better understanding of the process of cis-regulation will allow us to predict which sequences can drive expression and how perturbations affect this expression.




Identifying Cis-regulatory Elements Using Transient Assays


Book Description

Co-ordinated gene regulation by transcription factors is a complex collection of direct and indirect effects. Transient assays provide a rapid method to identify target from indirect target genes. Bioinformatic analysis of target gene promoters allows the subsequent identification of DNA motifs that are important for promoter activity.Phlorizin is the major phenolic component of apple trees, while its bioactive functions have been widely studied, little is known about its biosynthesis and biological role in the apple tree. I will give a short introduction to my PhD project which is based on uncovering the biosynthesis and possible roles of this interesting plant metabolite.










Embryos


Book Description

In this highly illustrated atlas, a group of internationally known authors review the development and significance of Arabidopsis, Dictyostelium discoideum, sea urchin, nematode worm, mollusc, leech, Drosophila, fish, toad, chick, mouse and human.







Plant Biotechnology and Genetics


Book Description

Designed to inform and inspire the next generation of plant biotechnologists Plant Biotechnology and Genetics explores contemporary techniques and applications of plant biotechnology, illustrating the tremendous potential this technology has to change our world by improving the food supply. As an introductory text, its focus is on basic science and processes. It guides students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Next, the text examines the critical issues of patents and intellectual property and then tackles the many controversies and consumer concerns over transgenic plants. The final chapter of the book provides an expert forecast of the future of plant biotechnology. Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions. Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. The text's accompanying CD-ROM offers full-color figures that can be used in classroom presentations with other teaching aids available online. This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.