Complete Guide to Semiconductor Devices


Book Description

A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.




Guide to State-of-the-Art Electron Devices


Book Description

Winner, 2013 PROSE Award, Engineering and Technology Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IRE electron devices committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists; circuit designers; Masters students in power electronics; and members of the IEEE Electron Device Society.




Introduction to Power Electronics


Book Description

The subject of power electronics is concerned with solid state devices for the control and conversion of electrical power. These silicon devices are designed mainly for switching the transfer current from one part of an electrical circuit to another. Power electronics has a wide range of applications from the small systems used in electrical appliances to very large systems for the supply and distribution of electricity. Although it can be difficult to completely define where the boundary lies between electronics and power electronics, this resource succeeds at breaking down the discipline. Containing the useful concepts and building blocks that go into making a power converter operate successfully, this book provides a description of the characteristics of different types of power semiconductor devices and their application to power converter circuits. Applications to power transmission, electric drives, and medical equipment are included to illustrate the wide range of power electronics in both small and high power circuits.




Photodetectors


Book Description

Explore this comprehensive introduction to the foundations of photodetection from one of the leading voices in the field The newly revised Photodetectors: Devices, Circuits and Applications delivers a thoroughly updated exploration of the fundamentals of photodetection and the novel technologies and concepts that have arisen since the release of the first edition twenty years ago. The book offers discussions of established and emerging photodetection technologies, including photomultipliers, the SPAD, the SiPM, the SNSPD, the UTC, the WGPD/TWPD, the QWIP, and the LT-GaAs. New examinations of correlation measurements on ultrafast pulses and single-photon detectors for quantum communications and LiDARs have also been added. Each chapter includes selected problems for students to work through to aid in learning and retention. A booklet of solutions is also provided. The book is especially ideal for students and faculties of Engineering, with an emphasis on first principles, design, and the engineering of photodetectors. Issues in the book are grouped through the development of concepts, as opposed to collections of technical details. Perfect for undergraduate students interested in the science or design of modern optoelectronics, Photodetectors: Devices, Circuits and Applications also belongs on the bookshelves of professors teaching PhD seminars in advanced courses on photodetection and noise, as well as engineers and physicists seeking a guide to an optimum photodetection solution.




Energy Efficient Computing & Electronics


Book Description

In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing. Features • Has a comprehensive coverage of various technologies • Written by international experts in their corresponding field • Covers revolutionary concepts at the device, circuit, and system levels







CMOS Electronics


Book Description

CMOS manufacturing environments are surrounded with symptoms that can indicate serious test, design, or reliability problems, which, in turn, can affect the financial as well as the engineering bottom line. This book educates readers, including non-engineers involved in CMOS manufacture, to identify and remedy these causes. This book instills the electronic knowledge that affects not just design but other important areas of manufacturing such as test, reliability, failure analysis, yield-quality issues, and problems. Designed specifically for the many non-electronic engineers employed in the semiconductor industry who need to reliably manufacture chips at a high rate in large quantities, this is a practical guide to how CMOS electronics work, how failures occur, and how to diagnose and avoid them. Key features: Builds a grasp of the basic electronics of CMOS integrated circuits and then leads the reader further to understand the mechanisms of failure. Unique descriptions of circuit failure mechanisms, some found previously only in research papers and others new to this publication. Targeted to the CMOS industry (or students headed there) and not a generic introduction to the broader field of electronics. Examples, exercises, and problems are provided to support the self-instruction of the reader.




Monolithic Phase-Locked Loops and Clock Recovery Circuits


Book Description

Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.




IEEE Circuits & Devices


Book Description




Arithmetic Circuits for DSP Applications


Book Description

A comprehensive guide to the fundamental concepts, designs, and implementation schemes, performance considerations, and applications of arithmetic circuits for DSP Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review of circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look up table-based techniques and their key applications; CORDIC circuits for calculation of trigonometric, hyperbolic and logarithmic functions; real and complex multiplications, division, and square-root; solution of linear systems; eigenvalue estimation; singular value decomposition; QR factorization and many other functions through the use of simple shift-add operations; and much more. This book serves as a comprehensive resource, which describes the arithmetic circuits as fundamental building blocks for state-of-the-art DSP and reviews in - depth the scope of their applications.