IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems


Book Description

The problems of system grounding, that is, connection to ground of neutral, of the corner of the delta, or of the midtap of one phase, are covered. The advantages and disadvantages of grounded versus ungrounded systems are discussed. Information is given on how to ground the system, where the system should be grounded, and how to select equipment for the grounding of the neutral circuits. Connecting the frames and enclosures of electric apparatus, such as motors, switchgear, transformers, buses, cables conduits, building frames, and portable equipment, to a ground system is addressed. The fundamentals of making the interconnection or ground-conductor system between electric equipment and the ground rods, water pipes, etc. are outlined. The problems of static electricity(how it is generated, what processes may produce it, how it is measured, and what should be done to prevent its generation or to drain the static charges to earth to prevent sparking(are treated. Methods of protecting structures against the effects of lightning are also covered. Obtaining a low-resistance connection to the earth, use of ground rods, connections to water pipes, etc, are discussed. A separate chapter on sensitive electronic equipment is included.







IEEE Recommended Practice for Electric Power Distribution for Industrial Plants


Book Description

A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.




IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications


Book Description

The IEEE Orange Book presents the recommended engineering practices for the selection and application of emergency and standby power systems. It provides commercial facility designers, operators and owners with guidelines for assuring uninterrupted power.










National Electrical Code


Book Description

Presents the latest electrical regulation code that is applicable for electrical wiring and equipment installation for all buildings, covering emergency situations, owner liability, and procedures for ensuring public and workplace safety.




Short-Circuits in AC and DC Systems


Book Description

This book provides an understanding of the nature of short-circuit currents, current interruption theories, circuit breaker types, calculations according to ANSI/IEEE and IEC standards, theoretical and practical basis of short-circuit current sources, and the rating structure of switching devices. The book aims to explain the nature of short-circuit currents, the symmetrical components for unsymmetrical faults, and matrix methods of solutions, which are invariably used on digital computers. It includes innovations, worked examples, case studies, and solved problems.




IEEE Recommended Practice for Calculating Short-Circuit Currents in Industrial and Commercial Power Systems


Book Description

This recommended practice provides short-circuit current information including calculated short-circuit current duties for the application in industrial plants and commercial buildings, at all power system voltages, of power system equipment that senses, carries, or interrupts short-circuit currents.




IEEE Recommended Practice for Applying Low-voltage Circuit Breakers Used in Industrial and Commercial Power Systems


Book Description

Information is provided for selecting the proper circuit breaker for a particular application. This recommended practice helps the application engineer specify the type of circuit breaker, ratings, trip functions, accessories, acceptance tests, and maintenance requirements. It also discusses circuit breakers for special applications, e.g., instantaneous only and switches. In addition, it provides information for applying circuit breakers at different locations in the power system, and for protecting specific components. Guidelines are also given for coordinating combinations of line-side and load-side devices.