iHorizon-Enabled Energy Management for Electrified Vehicles


Book Description

iHorizon-Enabled Energy Management for Electrified Vehicles proposes a realistic solution that assumes only scarce information is available prior to the start of a journey and that limited computational capability can be allocated for energy management. This type of framework exploits the available resources and closely emulates optimal results that are generated with an offline global optimal algorithm. In addition, the authors consider the present and future of the automotive industry and the move towards increasing levels of automation. Driver vehicle-infrastructure is integrated to address the high level of interdependence of hybrid powertrains and to comply with connected vehicle infrastructure. This book targets upper-division undergraduate students and graduate students interested in control applied to the automotive sector, including electrified powertrains, ADAS features, and vehicle automation. Addresses the level of integration of electrified powertrains Presents the state-of-the-art of electrified vehicle energy control Offers a novel concept able to perform dynamic speed profile and energy demand prediction




Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles


Book Description

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.




Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles


Book Description

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.




Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles


Book Description

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.




Hybrid Electric Vehicles


Book Description

This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.




Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles


Book Description

This book addresses the practical issues for commercialization of current and future electric and plug-in hybrid electric vehicles (EVs/PHEVs). The volume focuses on power electronics and motor drives based solutions for both current as well as future EV/PHEV technologies. Propulsion system requirements and motor sizing for EVs is also discussed, along with practical system sizing examples. PHEV power system architectures are discussed in detail. Key EV battery technologies are explained as well as corresponding battery management issues are summarized. Advanced power electronic converter topologies for current and future charging infrastructures will also be discussed in detail. EV/PHEV interface with renewable energy is discussed in detail, with practical examples.




Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles


Book Description

The urgent need for vehicle electrification and improvement in fuel efficiency has gained increasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-based strategies to optimization-based methods, that can provide diverse options to achieve higher fuel economy performance. However, the research scope for energy management is still expanding with the development of intelligent transportation systems and the improvement in onboard sensing and computing resources. Owing to the boom in machine learning, especially deep learning and deep reinforcement learning (DRL), research on learning-based energy management strategies (EMSs) is gradually gaining more momentum. They have shown great promise in not only being capable of dealing with big data, but also in generalizing previously learned rules to new scenarios without complex manually tunning. Focusing on learning-based energy management with DRL as the core, this book begins with an introduction to the background of DRL in HEV energy management. The strengths and limitations of typical DRL-based EMSs are identified according to the types of state space and action space in energy management. Accordingly, value-based, policy gradient-based, and hybrid action space-oriented energy management methods via DRL are discussed, respectively. Finally, a general online integration scheme for DRL-based EMS is described to bridge the gap between strategy learning in the simulator and strategy deployment on the vehicle controller.




Vehicle-infrastructure Integration Enabled Plug-in Hybrid Electric Vehicles for Energy Management


Book Description

Abstract: The U.S. federal government is seeking useful applications of Vehicle-Infrastructure Integration (VII) to encourage a greener and more efficient transportation system; Plug-in Hybrid Electric Vehicles (PHEVs) are considered as one of the most promising automotive technologies for such an application. In this study, the author demonstrates a strategy to improve PHEV energy efficiency via the use of VII. This dissertation, which is composed of three published peer-reviewed journal articles, demonstrates the efficacies of the PHEV-VII system as regards to both the energy use and environmental impact under different scenarios. The first article demonstrates the capabilities of and benefits achievable for a power-split drivetrain PHEV with a VII-based energy optimization strategy. With the consideration of several real-time implementation issues, the results show improvements in fuel consumption with the PHEV-VII system under various driving cycles. In the second article, a forward PHEV model with an energy management system and a cycle optimization algorithm is evaluated for energy efficiency. Prediction cycles are optimized using a cycle optimization strategy, which resulted in 56-86% fuel efficiency improvements for conventional vehicles. When combined with the PHEV power management system, about 115% energy efficiency improvements were achieved. The third article focuses on energy and emission impacts of the PHEV-VII system. At a network level, a benefit-cost analysis is conducted, which indicated that the benefits outweighed costs for PHEV and Hybrid Electric Vehicle (HEV) integrated with a VII system at the fleet penetration rate of 20% and 30%, respectively.




Design, Analysis and Applications of Renewable Energy Systems


Book Description

Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods Includes new circuits and systems, helping researchers solve many nonlinear problems




Energy Efficient Non-Road Hybrid Electric Vehicles


Book Description

This book analyzes the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications that work in continuous high dynamic operation. It also provides practical insights into maximizing the energy efficiency and drivability of such powertrains. It introduces an energy-management control structure, which considers all the physical powertrain constraints and uses novel methodologies to predict the future load requirements to optimize the controller output in terms of the entire work cycle of a non-road vehicle. The load prediction includes a methodology for short-term loads as well as cycle detection methodology for an entire load cycle. In this way, the energy efficiency can be maximized, and fuel consumption and exhaust emissions simultaneously reduced. Readers gain deep insights into the topics that need to be considered in designing an energy and battery management system for non-road vehicles. It also becomes clear that only a combination of management systems can significantly increase the performance of a controller.