Ill-posed Variational Problems and Regularization Techniques


Book Description

This book presents recent developments in the field of ill-posed variational problems and variational inequalities, covering a large range of theoretical, numerical and practical aspects. The main topics are: - Regularization techniques for equilibrium and fixed point problems, variational inequalities and complementary problems, - Links between approximation, penalization and regularization, - Bundle methods, nonsmooth optimization and regularization, - Error Bounds for regularized optimization problems.




Regularization Algorithms for Ill-Posed Problems


Book Description

This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems




Computational Methods for Inverse Problems


Book Description

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.




Regularization of Ill-Posed Problems by Iteration Methods


Book Description

Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given.




Iterative Regularization Methods for Nonlinear Ill-Posed Problems


Book Description

Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.




Recent Advances in Optimization


Book Description

The contributions appearing in this book give an overview of recent research done in optimization and related areas, such as optimal control, calculus of variations, and game theory. They do not only address abstract issues of optimization theory, but are also concerned with the modeling and computer resolution of specific optimization problems arising in industry and applied sciences.




Handbook of Mathematical Methods in Imaging


Book Description

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Optimal Methods for Ill-Posed Problems


Book Description

The book covers fundamentals of the theory of optimal methods for solving ill-posed problems, as well as ways to obtain accurate and accurate-by-order error estimates for these methods. The methods described in the current book are used to solve a number of inverse problems in mathematical physics. Contents Modulus of continuity of the inverse operator and methods for solving ill-posed problems Lavrent’ev methods for constructing approximate solutions of linear operator equations of the first kind Tikhonov regularization method Projection-regularization method Inverse heat exchange problems




Advances in Imaging and Electron Physics


Book Description

The subjects reviewed in the 'Advances' series cover a broad range of themes including microscopy, electromagnetic fields and image coding. Volume 128 concentrates on regularization, a vital aspect of restoration on low voltage scanning electron microscopy.This Book looks at theory and it's application in a practical sense, with a full account of the methods used and realistic detailed application. The authors do this by examining the latest developments, historic illustrations and mathematical fundamentals of the exciting developments in imaging and applying them to realistic practical situationsThe text bridges the gap between academic researchers and R&D designers by addressing and solving daily issues, which makes this book essential reading.·Emphasizes broad and in depth article collaborations between world-renowned scientists in the field of image and electron physics·Presents theory and it's application in a practical sense, providing long awaited solutions and new findings·Bridges the gap between academic researchers and practitioners in industry