Underground Injection Science and Technology


Book Description

Chapters by a distinguished group of international authors on various aspects of Underground Injection Science and Technology are organized into seven sections addressing specific topics of interest. In the first section the chapters focus on the history of deep underground injection as well regulatory issues, future trends and risk analysis. The next section contains ten chapters dealing with well testing and hydrologic modeling. Section 3, consisting of five chapters, addresses various aspects of the chemical processes affecting the fate of the waste in the subsurface environment. Consideration is given here to reactions between the waste and the geologic medium, and reactions that take place within the waste stream itself. The remaining four sections deal with experience relating to injection of, respectively, liquid wastes, liquid radioactive wastes in Russia, slurried solids, and compressed carbon dioxide. Chapters in Section 4, cover a diverse range of other issues concerning the injection of liquid wastes including two that deal with induced seismicity. In Section 5, Russian scientists have contributed several chapters revealing their knowledge and experience of the deep injection disposal of high-level radioactive liquid processing waste. Section 6 consists of five chapters that cover the technology surrounding the injection disposal of waste slurries. Among the materials considered are drilling wastes, bone meal, and biosolids. Finally, four chapters in Section 7 deal with questions relating to carbon dioxide sequestration in deep sedimentary aquifers. This subject is particularly topical as nations grapple with the problem of controlling the buildup of carbon dioxide in the atmosphere.* Comprehensive coverage of the state of the art in underground injection science and technology* Emerging subsurface waste disposal technologies* International scope













Illinois Documents List


Book Description




Landscape Simulation Modeling


Book Description

The world consists of many complex systems, ranging from our own bodies to ecosystems to economic systems. Despite their diversity, complex systems have many structural and functional features in common that can be effectively si- lated using powerful, user-friendly software. As a result, virtually anyone can - plore the nature of complex systems and their dynamical behavior under a range of assumptions and conditions. This ability to model dynamic systems is already having a powerful influence on teaching and studying complexity. The books in this series will promote this revolution in “systems thinking” by integrating computational skills of numeracy and techniques of dynamic mod- ing into a variety of disciplines. The unifying theme across the series will be the power and simplicity of the model-building process, and all books are designed to engage the reader in developing their own models for exploration of the dyn- ics of systems that are of interest to them. Modeling Dynamic Systems does not endorse any particular modeling paradigm or software. Rather, the volumes in the series will emphasize simplicity of lea- ing, expressive power, and the speed of execution as priorities that will facilitate deeper system understanding.




Geochemical Reaction Modeling


Book Description

Geochemical reaction modeling plays an increasingly vital role in several areas of geoscience, from environmental geochemistry and petroleum geology to the study of geothermal and hydrothermal fluids. This book provides an up-to-date overview of the use of numerical methods to model reaction processes in the Earth's crust and on its surface. Early chapters develop the theoretical foundations of the field, derive a set of governing equations, and show how numerical methods can be used to solve these equations. Other chapters discuss the distribution of species in natural waters; methods for computing activity coefficients in dilute solutions and in brines; the complexation of ions into mineral surfaces; the kinetics of precipitation and dissolution reactions; and the fractionation of stable isotopes. Later chapters provide a large number of fully worked calculation examples and case studies demonstrating the modeling techniques that can be applied to scientific and practical problems. Students in a variety of specialties from low-temperature geochemistry to groundwater hydrology will benefit from the wealth of information and practical applications this book has to offer.




Geochemical and Biogeochemical Reaction Modeling


Book Description

Comprehensive primer/handbook on geochemical reaction modeling, from its origins and theoretical underpinnings to fully worked examples.