Image Processing And Analysis: A Primer


Book Description

This textbook guides readers through their first steps into the challenging world of mimicking human vision with computational tools and techniques pertaining to the field of image processing and analysis. While today's theoretical and applied processing and analysis of images meet with challenging and complex problems, this primer is confined to a much simpler, albeit critical, collection of image-to-image transformations, including image normalisation, enhancement, and filtering.It serves as an introduction to beginners, a refresher for undergraduate and graduate students, as well as engineers and computer scientists confronted with a problem to solve in computer vision. The book covers basic image processing/computer vision pipeline techniques, which are widely used in today's computer vision, computer graphics, and image processing, giving the readers enough knowledge to successfully tackle a wide range of applied problems.




Document Image Analysis


Book Description




Image Texture Analysis


Book Description

This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis. Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks. This introductory text on image texture analysis is ideally suitable for senior undergraduate and first-year graduate students of computer science, who will benefit from the numerous clarifying examples provided throughout the work.




Introduction to Image Processing and Analysis


Book Description

Image processing comprises a broad variety of methods that operate on images to produce another image. A unique textbook, Introduction to Image Processing and Analysis establishes the programming involved in image processing and analysis by utilizing skills in C compiler and both Windows and MacOS programming environments. The provided mathematical background illustrates the workings of algorithms and emphasizes the practical reasons for using certain methods, their effects on images, and their appropriate applications. The text concentrates on image processing and measurement and details the implementation of many of the most widely used and most important image processing and analysis algorithms. Homework problems are included in every chapter with solutions available for download from the CRC Press website The chapters work together to combine image processing with image analysis. The book begins with an explanation of familiar pixel array and goes on to describe the use of frequency space. Chapters 1 and 2 deal with the algorithms used in processing steps that are usually accomplished by a combination of measurement and processing operations, as described in chapters 3 and 4. The authors present each concept using a mixture of three mutually supportive tools: a description of the procedure with example images, the relevant mathematical equations behind each concept, and the simple source code (in C), which illustrates basic operations. In particularly, the source code provides a starting point to develop further modifications. Written by John Russ, author of esteemed Image Processing Handbook now in its fifth edition, this book demonstrates functions to improve an image's of features and detail visibility, improve images for printing or transmission, and facilitate subsequent analysis.




Fundamentals of Digital Image Processing


Book Description

This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.




MATLAB® for Photomechanics- A Primer


Book Description

The term "photomechanics" describes a suite of experimental techniques which use optics (photo) for studying problems in mechanics. The field has been in existence for some time, but has always lagged behind other experimental and numerical techniques. The main reason for this is that the interpretation of data, which whilst providing whole-field visualization, is not in a form readily amenable to the end-user. Digital image processing has become common within the photomechanics community. However, one approach does not fit all, and subtle variations in technique and method have been developed by different groups working on specific applications.This primer enables the user to get started with their experimental analysis quickly. It is based on the universally popular MATLAB® software, which includes dedicated and optimized functions for a variety of image processing tasks. These can readily scripted, along with the necessary mathematical expressions, for particular experimental techniques. The book provides an introduction to some of the optical techniques, and then introduces MATLAB® routines specific to the image processing in experimental mechanics. There are also case studies on particular techniques.As part of the book, a collection of M-files is provided on CD-ROM, which also contains example images and test code. This provides a starting point for the user, who can then easily add or edit statements or function for their own images.MATLAB® is a registered trademark of The MathWorks, Inc. For product information, visit http://www.mathworks.comhttp://www.mathworks.com




Fuzzy Image Processing and Applications with MATLAB


Book Description

In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.




Bioimage Data Analysis Workflows


Book Description

This Open Access textbook provides students and researchers in the life sciences with essential practical information on how to quantitatively analyze data images. It refrains from focusing on theory, and instead uses practical examples and step-by step protocols to familiarize readers with the most commonly used image processing and analysis platforms such as ImageJ, MatLab and Python. Besides gaining knowhow on algorithm usage, readers will learn how to create an analysis pipeline by scripting language; these skills are important in order to document reproducible image analysis workflows. The textbook is chiefly intended for advanced undergraduates in the life sciences and biomedicine without a theoretical background in data analysis, as well as for postdocs, staff scientists and faculty members who need to perform regular quantitative analyses of microscopy images.




Digital Image Processing


Book Description

Written as an introduction for undergraduate students, this textbook covers the most important methods in digital image processing. Formal and mathematical aspects are discussed at a fundamental level and various practical examples and exercises supplement the text. The book uses the image processing environment ImageJ, freely distributed by the National Institute of Health. A comprehensive website supports the book, and contains full source code for all examples in the book, a question and answer forum, slides for instructors, etc. Digital Image Processing in Java is the definitive textbook for computer science students studying image processing and digital processing.




The Colour Image Processing Handbook


Book Description

This book is aimed at those using colour image processing or researching new applications or techniques of colour image processing. It has been clear for some time that there is a need for a text dedicated to colour. We foresee a great increase in the use of colour over the coming years, both in research and in industrial and commercial applications. We are sure this book will prove a useful reference text on the subject for practicing engineers and scientists, for researchers, and for students at doctoral and, perhaps masters, level. It is not intended as an introductory text on image processing, rather it assumes that the reader is already familiar with basic image processing concepts such as image representation in digital form, linear and non-linear filtering, trans forms, edge detection and segmentation, and so on, and has some experience with using, at the least, monochrome equipment. There are many books cov ering these topics and some of them are referenced in the text, where appro priate. The book covers a restricted, but nevertheless, a very important, subset of image processing concerned with natural colour (that is colour as per ceived by the human visual system). This is an important field because it shares much technology and basic theory with colour television and video equipment, the market for which is worldwide and very large; and with the growing field of multimedia, including the use of colour images on the Inter net.