Image Processing and Jump Regression Analysis


Book Description

The first text to bridge the gap between image processing andjump regression analysis Recent statistical tools developed to estimate jump curves andsurfaces have broad applications, specifically in the area of imageprocessing. Often, significant differences in technicalterminologies make communication between the disciplines of imageprocessing and jump regression analysis difficult. Ineasy-to-understand language, Image Processing and JumpRegression Analysis builds a bridge between the worlds ofcomputer graphics and statistics by addressing both the connectionsand the differences between these two disciplines. The authorprovides a systematic analysis of the methodology behindnonparametric jump regression analysis by outlining procedures thatare easy to use, simple to compute, and have proven statisticaltheory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on localsmoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book isuniquely accessible to a broad readership. It may be used as aprimary text in nonparametric regression analysis and imageprocessing as well as a reference guide for academicians andindustry professionals focused on image processing or curve/surfaceestimation.




Image Processing and Jump Regression Analysis


Book Description

The first text to bridge the gap between image processing and jump regression analysis Recent statistical tools developed to estimate jump curves and surfaces have broad applications, specifically in the area of image processing. Often, significant differences in technical terminologies make communication between the disciplines of image processing and jump regression analysis difficult. In easy-to-understand language, Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic analysis of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on local smoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book is uniquely accessible to a broad readership. It may be used as a primary text in nonparametric regression analysis and image processing as well as a reference guide for academicians and industry professionals focused on image processing or curve/surface estimation.




Meta Analysis


Book Description

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence acts as a source of basic methods for scientists wanting to combine evidence from different experiments. The authors aim to promote a deeper understanding of the notion of statistical evidence. The book is comprised of two parts – The Handbook, and The Theory. The Handbook is a guide for combining and interpreting experimental evidence to solve standard statistical problems. This section allows someone with a rudimentary knowledge in general statistics to apply the methods. The Theory provides the motivation, theory and results of simulation experiments to justify the methodology. This is a coherent introduction to the statistical concepts required to understand the authors’ thesis that evidence in a test statistic can often be calibrated when transformed to the right scale.




Multivariate Time Series Analysis


Book Description

An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.




Foundations of Linear and Generalized Linear Models


Book Description

A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.




Time Series Analysis and Forecasting by Example


Book Description

An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.




Exploration and Analysis of DNA Microarray and Other High-Dimensional Data


Book Description

Praise for the First Edition “...extremely well written...a comprehensive and up-to-date overview of this important field.” – Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to study patterns of gene activity. The new edition answers the need for an efficient outline of all phases of this revolutionary analytical technique, from preprocessing to the analysis stage. Utilizing research and experience from highly-qualified authors in fields of data analysis, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition features: A new chapter on the interpretation of findings that includes a discussion of signatures and material on gene set analysis, including network analysis New topics of coverage including ABC clustering, biclustering, partial least squares, penalized methods, ensemble methods, and enriched ensemble methods Updated exercises to deepen knowledge of the presented material and provide readers with resources for further study The book is an ideal reference for scientists in biomedical and genomics research fields who analyze DNA microarrays and protein array data, as well as statisticians and bioinformatics practitioners. Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition is also a useful text for graduate-level courses on statistics, computational biology, and bioinformatics.




Clinical Trial Design


Book Description

A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.




Statistical Analysis of Profile Monitoring


Book Description

A one-of-a-kind presentation of the major achievements in statistical profile monitoring methods Statistical profile monitoring is an area of statistical quality control that is growing in significance for researchers and practitioners, specifically because of its range of applicability across various service and manufacturing settings. Comprised of contributions from renowned academicians and practitioners in the field, Statistical Analysis of Profile Monitoring presents the latest state-of-the-art research on the use of control charts to monitor process and product quality profiles. The book presents comprehensive coverage of profile monitoring definitions, techniques, models, and application examples, particularly in various areas of engineering and statistics. The book begins with an introduction to the concept of profile monitoring and its applications in practice. Subsequent chapters explore the fundamental concepts, methods, and issues related to statistical profile monitoring, with topics of coverage including: Simple and multiple linear profiles Binary response profiles Parametric and nonparametric nonlinear profiles Multivariate linear profiles monitoring Statistical process control for geometric specifications Correlation and autocorrelation in profiles Nonparametric profile monitoring Throughout the book, more than two dozen real-world case studies highlight the discussed topics along with innovative examples and applications of profile monitoring. Statistical Analysis of Profile Monitoring is an excellent book for courses on statistical quality control at the graduate level. It also serves as a valuable reference for quality engineers, researchers and anyone who works in monitoring and improving statistical processes.




Nonparametric Statistical Methods


Book Description

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.