Image Processing and GIS for Remote Sensing


Book Description

Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.




Remote Sensing


Book Description

This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.




Remote Sensing Digital Image Analysis


Book Description

With the widespread availability of satellite and aircraft remote sensing image data in digital form, and the ready access most remote sensing practitioners have to computing systems for image interpretation, there is a need to draw together the range of digital image processing procedures and methodologies commonly used in this field into a single treatment. It is the intention of this book to provide such a function, at a level meaningful to the non-specialist digital image analyst, but in sufficient detail that algorithm limitations, alternative procedures and current trends can be appreciated. Often the applications specialist in remote sensing wishing to make use of digital processing procedures has had to depend upon either the mathematically detailed treatments of image processing found in the electrical engineering and computer science literature, or the sometimes necessarily superficial treatments given in general texts on remote sensing. This book seeks to redress that situation. Both image enhancement and classification techniques are covered making the material relevant in those applications in which photointerpretation is used for information extraction and in those wherein information is obtained by classification.




Signal Processing for Remote Sensing


Book Description

Continuing in the footsteps of the pioneering first edition, Signal and Image Processing for Remote Sensing, Second Edition explores the most up-to-date signal and image processing methods for dealing with remote sensing problems. Although most data from satellites are in image form, signal processing can contribute significantly in extracting information from remotely sensed waveforms or time series data. This book combines both, providing a unique balance between the role of signal processing and image processing. Featuring contributions from worldwide experts, this book continues to emphasize mathematical approaches. Not limited to satellite data, it also considers signals and images from hydroacoustic, seismic, microwave, and other sensors. Chapters cover important topics in signal and image processing and discuss techniques for dealing with remote sensing problems. Each chapter offers an introduction to the topic before delving into research results, making the book accessible to a broad audience. This second edition reflects the considerable advances that have occurred in the field, with 23 of 27 chapters being new or entirely rewritten. Coverage includes new mathematical developments such as compressive sensing, empirical mode decomposition, and sparse representation, as well as new component analysis methods such as non-negative matrix and tensor factorization. The book also presents new experimental results on SAR and hyperspectral image processing. The emphasis is on mathematical techniques that will far outlast the rapidly changing sensor, software, and hardware technologies. Written for industrial and academic researchers and graduate students alike, this book helps readers connect the "dots" in image and signal processing. New in This Edition The second edition includes four chapters from the first edition, plus 23 new or entirely rewritten chapters, and 190 new figures. New topics covered include: Compressive sensing The mixed pixel problem with hyperspectral images Hyperspectral image (HSI) target detection and classification based on sparse representation An ISAR technique for refocusing moving targets in SAR images Empirical mode decomposition for signal processing Feature extraction for classification of remote sensing signals and images Active learning methods in classification of remote sensing images Signal subspace identification of hyperspectral data Wavelet-based multi/hyperspectral image restoration and fusion The second edition is not intended to replace the first edition entirely and readers are encouraged to read both editions of the book for a more complete picture of signal and image processing in remote sensing. See Signal and Image Processing for Remote Sensing (CRC Press 2006).




Introductory Digital Image Processing


Book Description

For junior/graduate-level courses in Remote Sensing in Geography, Geology, Forestry, and Biology. This revision of Introductory Digital Image Processing: A Remote Sensing Perspective continues to focus on digital image processing of aircraft- and satellite-derived, remotely sensed data for Earth resource management applications. Extensively illustrated, it explains how to extract biophysical information from remote sensor data for almost all multidisciplinary land-based environmental projects. Part of the Prentice Hall Series Geographic Information Science.




Remote Sensing Image Processing


Book Description

Earth observation is the field of science concerned with the problem of monitoring and modeling the processes on the Earth surface and their interaction with the atmosphere. The Earth is continuously monitored with advanced optical and radar sensors. The images are analyzed and processed to deliver useful products to individual users, agencies and public administrations. To deal with these problems, remote sensing image processing is nowadays a mature research area, and the techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, data coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This book covers some of the fields in a comprehensive way. Table of Contents: Remote Sensing from Earth Observation Satellites / The Statistics of Remote Sensing Images / Remote Sensing Feature Selection and Extraction / Classification / Spectral Mixture Analysis / Estimation of Physical Parameters




Computer Processing of Remotely-Sensed Images


Book Description

Remotely-sensed images of the Earth's surface provide a valuable source of information about the geographical distribution and properties of natural and cultural features. This fully revised and updated edition of a highly regarded textbook deals with the mechanics of processing remotely-senses images. Presented in an accessible manner, the book covers a wide range of image processing and pattern recognition techniques. Features include: New topics on LiDAR data processing, SAR interferometry, the analysis of imaging spectrometer image sets and the use of the wavelet transform. An accompanying CD-ROM with: updated MIPS software, including modules for standard procedures such as image display, filtering, image transforms, graph plotting, import of data from a range of sensors. A set of exercises, including data sets, illustrating the application of discussed methods using the MIPS software. An extensive list of WWW resources including colour illustrations for easy download. For further information, including exercises and latest software information visit the Author's Website at: http://homepage.ntlworld.com/paul.mather/ComputerProcessing3/




Signal and Image Processing for Remote Sensing


Book Description

Most data from satellites are in image form, thus most books in the remote sensing field deal exclusively with image processing. However, signal processing can contribute significantly in extracting information from the remotely sensed waveforms or time series data. Pioneering the combination of the two processes, Signal and Image Processing for Re




Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data


Book Description

The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.




Big Data Analytics for Satellite Image Processing and Remote Sensing


Book Description

The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.