Group-Theoretical Methods in Image Understanding


Book Description

Image understanding is an attempt to extract knowledge about a 3D scene from 20 images. The recent development of computers has made it possible to automate a wide range of systems and operations, not only in the industry, military, and special environments (space, sea, atomic plants, etc.), but also in daily life. As we now try to build ever more intelligent systems, the need for "visual" control has been strongly recognized, and the interest in image under standing has grown rapidly. Already, there exists a vast body of literature-ranging from general philosophical discourses to processing techniques. Compared with other works, however, this book may be unique in that its central focus is on "mathematical" principles-Lie groups and group representation theory, in particular. In the study of the relationship between the 3D scene and the 20 image, "geometry" naturally plays a central role. Today, so many branches are inter woven in geometry that we cannot truly regard it as a single subject. Neverthe less, as Felix Klein declared in his Erlangen Program, the central principle of geometry is group theory, because geometrical concepts are abstractions of properties that are "invariant" with respect to some group of transformations. In this text, we specifically focus on two groups of transformations. One is 20 rotations of the image coordinate system around the image origin. Such coordi nate rotations are indeed irrelevant when we look for intrinsic image properties.




Image Understanding


Book Description




Surfaces in Range Image Understanding


Book Description

Machine perception requires the digitization of physically-sensed signals. During the last ten years, digital range images have become available from a variety of sensors. This book is devoted to the problem of range image understanding with computers. Its aims are to develop a theoretical framework, devise appropriate algorithms, and demonstrate a software implementation of those algorithms that will confirm the usefulness of surfaces in range image understanding. It will be of interest to the researcher studying the theoretical concepts of image understanding, as well as the engineer who wants to implement these concepts in practical applications.




Image Understanding


Book Description

This graduate textbook explains image reconstruction technologies based on region-based binocular and trinocular stereo vision, and object, pattern and relation matching. It further discusses principles and applications of multi-sensor fusion and content-based retrieval. Rich in examples and excises, the book concludes image engineering studies for electrical engineering and computer science students.




Introduction to Image Processing and Analysis


Book Description

Image processing comprises a broad variety of methods that operate on images to produce another image. A unique textbook, Introduction to Image Processing and Analysis establishes the programming involved in image processing and analysis by utilizing skills in C compiler and both Windows and MacOS programming environments. The provided mathematical background illustrates the workings of algorithms and emphasizes the practical reasons for using certain methods, their effects on images, and their appropriate applications. The text concentrates on image processing and measurement and details the implementation of many of the most widely used and most important image processing and analysis algorithms. Homework problems are included in every chapter with solutions available for download from the CRC Press website The chapters work together to combine image processing with image analysis. The book begins with an explanation of familiar pixel array and goes on to describe the use of frequency space. Chapters 1 and 2 deal with the algorithms used in processing steps that are usually accomplished by a combination of measurement and processing operations, as described in chapters 3 and 4. The authors present each concept using a mixture of three mutually supportive tools: a description of the procedure with example images, the relevant mathematical equations behind each concept, and the simple source code (in C), which illustrates basic operations. In particularly, the source code provides a starting point to develop further modifications. Written by John Russ, author of esteemed Image Processing Handbook now in its fifth edition, this book demonstrates functions to improve an image's of features and detail visibility, improve images for printing or transmission, and facilitate subsequent analysis.




Image Understanding Workshop


Book Description

"The main theme of the 1988 workshop, the 18th in this DARPA sponsored series of meetings on Image Understanding and Computer Vision, is to cover new vision techniques in prototype vision systems for manufacturing, navigation, cartography, and photointerpretation." P. v.




Multispectral Satellite Image Understanding


Book Description

This book presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, the book describes a system for the effective detection of single houses and streets in very high resolution. Topics and features: with a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center; provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a focus on vegetation and shadow-water indices; investigates methods for land-use classification, introducing precise graph theoretical measures over panchromatic images; addresses the problem of detecting residential regions; describes a house and street network-detection subsystem; concludes with a summary of the key ideas covered in the book.




Biomedical Image Understanding


Book Description

A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from experts in China, France, Italy, Japan, Singapore, the United Kingdom, and the United States, Biomedical Image Understanding: Addresses motion tracking and knowledge-based systems, two areas which are not covered extensively elsewhere in a biomedical context Describes important clinical applications, such as virtual colonoscopy, ocular disease diagnosis, and liver tumor detection Contains twelve self-contained chapters, each with an introduction to basic concepts, principles, and methods, and a case study or application With over 150 diagrams and illustrations, this bookis an essential resource for the reader interested in rapidly advancing research and applications in biomedical image understanding.




Medical Image Understanding Technology


Book Description

A detailed description of a new approach to perceptual analysis and processing of medical images is given. Instead of traditional pattern recognition a new method of image analysis is presented, based on a syntactic description of the shapes selected on the image and graph-grammar parsing algorithms. This method of "Image Understanding" can be found as a model of mans' cognitive image understanding processes. The usefulness for the automatic understanding of the merit of medical images is demonstrated as well as the ability for giving useful diagnostic descriptions of the illnesses. As an application, the production of a content-based, automatically generated index for arranging and for searching medical images in multimedia medical databases is presented.