Imaging Microstructures


Book Description

This book contains the proceedings of the research conference, ``Imaging Microstructures: Mathematical and Computational Challenges'', held at the Institut Henri Poincare, on June 18-20, 2008. The problems that appear in imaging microstructures pose significant challenges to our community. The methods involved come from a wide range of areas of pure and applied mathematics. The main purpose of this volume is to review the state-of the-art developments from analytic, numerical, and physics perspectives.




Image Analysis in Earth Sciences


Book Description

Image Analysis in Earth Sciences is a graduate level textbook for researchers and students interested in the quantitative microstructure and texture analysis of earth materials. Methods of analysis and applications are introduced using carefully worked examples. The input images are typically derived from earth materials, acquired at a wide range of scales, through digital photography, light and electron microscopy. The book focuses on image acquisition, pre- and post-processing, on the extraction of objects (segmentation), the analysis of volumes and grain size distributions, on shape fabric analysis (particle and surface fabrics) and the analysis of the frequency domain (FFT and ACF). The last chapters are dedicated to the analysis of crystallographic fabrics and orientation imaging. Throughout the book the free software Image SXM is used.




Microstructural Analysis


Book Description

During recent years, people involved in developing new metals and materials for use in some of the rather extreme conditions of stress, temperature, and environment have relied heavily on the microstructural condition of their materials. In fact, many of the newer materials, such as dispersion-strengthened alloys, have been designed almost entirely by first determining the microstruc ture desired and then finding the right combination of composition, heat treatment, and mechanical working that will result in the de sired microstructure. Furthermore, the extremely high reliability required of materials used today, for example, in aerospace and nuclear energy systems, requires close control on the microstruc tural conditions of materials. This is clearly evident from even a cursory examination of recently written specifications for mate rials where rather precise microstructural parameters are stipu lated. Whereas specifications written several years ago may have included microstructural requirements for details such as ASTM grain size or graphite type, today's specifications are beginning to include such things as volume fraction of phases, mean free path of particles, and grain intercept distances. Rather arbitrary terms such as "medium pearlite" have been replaced by requirements such as "interlamella spacing not to exceed 0. 1 micron. " Finally, materials users have become increasingly aware that when a material does fail, the reason for its failure may be found by examining and "reading" its microstructure. The responsibility for a particular microstructure and a resulting failure is a matter of growing importance in current product liability consider ations.




Image Analysis of Food Microstructure


Book Description

Image Analysis of Food Microstructure offers a condensed guide to the most common procedures and techniques by which quantitative microstructural information about food can be obtained from images. The images are selected from a broad range of food items, including macroscopic images of meat and finished products such as pizza, and the microstructu




Assessing Cellular Microstructure in Biological Tissues using In Vivo Diffusion-Weighted Magnetic Resonance


Book Description

Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have opened new doors for examining biological tissues in vivo. By combining sensitization to diffusion using magnetic field gradients with a variety of imaging and localization schemes, diffusion-weighted MRI and diffusion-weighted MRS allow investigating translational diffusion of endogenous molecules, such as water or metabolites, in biological tissues, most commonly the brain but also other organs such as the prostate. The typical voxel resolution of MRI or MRS is in the millimeter to centimeter range, much lower than the cellular scale. However, as molecules are typically diffusing over just a few µm during the duration of the measurement (the “diffusion time”) and encounter numerous biological membranes at these scales, the average cellular microstructure has a critical influence on the measured diffusion signal. Hence, diffusion-weighted MRI and diffusion-weighted MRS are sensitive to tissue microstructure at a scale well below the nominal imaging resolution. However, the connection between diffusion properties and tissue microstructure remains indirect, so any attempt to quantify microstructure will rely on modeling. The goal of this Research Topic was to gather experts in various acquisition and modeling strategies and show how these approaches, despite their own strengths and weaknesses, can yield unique information about cellular microstructure, and sometimes complement each other.




Microstructural Characterization of Materials


Book Description

Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.




Image Analysis of Food Microstructure


Book Description

Image Analysis of Food Microstructure offers a condensed guide to the most common procedures and techniques by which quantitative microstructural information about food can be obtained from images. The images are selected from a broad range of food items, including macroscopic images of meat and finished products such as pizza, and the microstructures of cheeses, dough and baked goods, ice cream, fruits and vegetables, emulsions, foams, and gels. The book informs food scientists about the image processing and measurement tools used to characterize a variety of microstructures in foods, using high-quality image techniques to illustrate chemical composition, thermo-mechanical processing, and genetic and structural properties. These different types of images used to measure various aspects of structure include: macroscopic light photography, confocal light microscopy, electron microscopy, atomic force microscope images, magnetic resonance, and computed tomography. Then the text explains how to interpret images to produce data, plot the results in different graphs, and identify trends. Examples using these image analysis techniques show typical results that researchers can expect and recreate. Image Analysis of Food Microstructure summarizes the basic procedures that can be useful in various aspects of food research, from nutraceuticals to cooking and food processing. It presents the processing of images and mathematical principles needed for image analyses in a step-by-step approach to extract key information from the images obtained.




Image-Based Fractal Description of Microstructures


Book Description

Fractal analysis has rapidly become an important field in materials science and engineering with broad applications to theoretical analysis and quantitative description of microstructures of materials. Fractal methods have thus far shown great potential in engineering applications in quantitative microscopic analysis of materials using commercial microscopes. This book attempts to introduce the fundamentals and the basis methods of fractal description of microstructures in combination with digital imaging and computer technologies. Basic concepts are given in the form of mathematical expressions. Detailed algorithms in practical applications are also provided. Fractal measurement, error analysis and fractal description of cluster growth, thin films and surfaces are emphasized in this book. Image-Based Fractal Description of Microstructures provides a comprehensive approach to materials characterization by fractal from theory to application.







High-Resolution Imaging and Spectrometry of Materials


Book Description

The characterisation of materials and material systems is an essential aspect of materials science. A few decades ago it became obvious that, because the properties of materials depend so critically on the microstructure of their components, this characterisation must be determined to the atomic level. This means that the position - as well as the nature - of individual atoms has to be determined at "critical" regions close to defects such as dislocations, interfaces, and surfaces. The great impact of advanced transmission electron microscopy (TEM) techniques became apparent in the area of semiconducting materials, where the nature of internal interfaces between silicon and the corresponding silicides could be identified, and the results used to enhance the understanding of the properties of the compounds studied. At that time, advanced TEM techniques existed predominantly in the US. However, advanced TEM instrumentation was not available in the ma terials science and solid-state science communities in Germany. This gap was bridged by the late Peter Haasen who, after a visit to the US, initiated a Priority Programme on Microstructural Characterisation at the Volkswagen Foundation (Hannover). The programme was in effect from 1985 to 1997 and supported a wide range of research projects - from fundamental, trendy, innovative projects to projects in applied materials science.