Imaging Technologies and Data Processing for Food Engineers


Book Description

Food products are complex in nature which makes their analysis difficult. Different scientific disciplines such as biochemistry, microbiology, and nutrition, together with engineering concepts are involved in their characterization. However, imaging of food materials and data analysis has gained more importance due to innovations in the food industry, as well as the emergence of food nanotechnology. Image analysis protocols and techniques can be used in food structure analysis and process monitoring. Therefore, food structure imaging is crucial for various sections of the food chain starting from the raw material to the end product. This book provides information on imaging techniques such as electron microscopy, laser microscopy, x-ray tomography, raman and infrared imaging, together with data analysis protocols. It addresses the most recent advances in imaging technologies and data analysis of grains, liquid food systems (i.e. emulsions and gels), semi-solid and solid foams (i.e. bakery products, dough, expanded snacks), protein films, fruits and vegetable confectionery and nuts. This book also: Provides in-depth view of raw material characterization and process control Covers structure-functionality and structure-texture relationships Reviews applications to emerging areas of food science with an insight into future trends




Hyperspectral Imaging Technology in Food and Agriculture


Book Description

Hyperspectral imaging or imaging spectroscopy is a novel technology for acquiring and analysing an image of a real scene by computers and other devices in order to obtain quantitative information for quality evaluation and process control. Image processing and analysis is the core technique in computer vision. With the continuous development in hardware and software for image processing and analysis, the application of hyperspectral imaging has been extended to the safety and quality evaluation of meat and produce. Especially in recent years, hyperspectral imaging has attracted much research and development attention, as a result rapid scientific and technological advances have increasingly taken place in food and agriculture, especially on safety and quality inspection, classification and evaluation of a wide range of food products, illustrating the great advantages of using the technology for objective, rapid, non-destructive and automated safety inspection as well as quality control. Therefore, as the first reference book in the area, Hyperspectral Imaging Technology in Food and Agriculture focuses on these recent advances. The book is divided into three parts, which begins with an outline of the fundamentals of the technology, followed by full covering of the application in the most researched areas of meats, fruits, vegetables, grains and other foods, which mostly covers food safety and quality as well as remote sensing applicable for crop production. Hyperspectral Imaging Technology in Food and Agriculture is written by international peers who have both academic and professional credentials, with each chapter addressing in detail one aspect of the relevant technology, thus highlighting the truly international nature of the work. Therefore the book should provide the engineer and technologist working in research, development, and operations in the food and agricultural industry with critical, comprehensive and readily accessible information on the art and science of hyperspectral imaging technology. It should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.




Food Physics


Book Description

This is the first textbook in this field of increasing importance for the food and cosmetics industries. It is indispensable for future students of food technology and food chemistry as well as for engineers, technologists and technicians in the food industries. It describes the principles of food physics starting with the very basics – and focuses on the needs of practitioners without omitting important basic principles. It will be indispensable for future students of food technology and food chemistry as well as for engineers, technologists and technicians in the food industries. Food Physics deals with the physical properties of food, food ingredients and their measurement.




Fundamentals of 3D Food Printing and Applications


Book Description

Fundamentals of 3D Food Printing and Applications provides an update on this emerging technology that can not only create complex edible shapes, but also enable the alteration of food texture and nutritional content required by specific diets. This book discusses 3D food printing technologies and their working mechanisms within a broad spectrum of application areas, including, but not limited to, the development of soft foods and confectionary designs. It provides a unique and contemporary guide to help correlate supply materials (edible inks) and the technologies (e.g., extrusion and laser based) used during the construction of computer-aided 3D shapes. Users will find a great reference that will help food engineers and research leaders in food science understand the characteristics of 3D food printing technologies and edible inks. - Details existing 3D food printing techniques, with an in-depth discussion on the mechanisms of formation of self-supporting layers - Includes the effects of flow behaviour and viscoelastic properties of printing materials - Presents strategies to enhance printability, such as the incorporation of hydrocolloids and lubricant enhancers - 3D printing features of a range of food materials, including cereal based, insect enriched, fruits and vegetables, chocolate and dairy ingredients - Business development for chocolate printing and the prospects of 3D food printing at home for domestic applications - Prosumer-driven 3D food printing - Safety and labelling of 3D printed food




Food Process Engineering and Technology


Book Description

The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues




Fat Mimetics for Food Applications


Book Description

FAT MIMETICS FOR FOOD APPLICATIONS Detailed resource providing insight into the understanding of fat mimetics and their use for the development of food products Fat Mimetics for Food Applications explores strategies for the development of fat mimetics for food applications, including meat, dairy, spreads and baked products, covering all the physical strategies and presenting the main characterization techniques for the study of fat mimetics behaviour. The text further provides insight into the understanding of fat mimetics in food structure and how it affects food products. Fat Mimetics for Food Applications is organized into five sections. The first section provides a historical overview and thermodynamic perspective of the structure-properties relationship in fat mimetics. Section II is devoted to the main materials used for the development of fat mimetics, and the structures that result from different methodologies and approaches. Section III overviews the methodologies used for the characterization of the developed replacers. Section IV contains examples of what has been done in the use of fat mimetics in food. Section V focuses on a future perspective, along with real cases of projects within the industry and a commercial perspective of some examples. Topics covered in Fat Mimetics for Food Applications include: Role of lipids in foods and human nutrition; the current status of fats in the food industry; and food trends as they pertain to fat mimetics Materials for the production of fat mimetics such as natural waxes, sterols, lecithin, mono and di-glycerides, fatty alcohols and fatty acids, polysaccharides and proteins Rheological and texture properties; sensorial aspects of fat mimetics and advanced characterization strategies such as small-angle X-ray scattering and small-angle neutron scattering Fat mimetics’ nutritional and functional properties, along with examples of using in vitro gastrointestinal digestion system to unravel the lipids fat during digestion Examples of the application of fat mimetics in different food products such as meat, dairy, margarine and fat spreads and baked products Fat Mimetics for Food Applications targets researchers, academics, and food industry professionals to boost their capability to integrate different science and technology as well as engineering and materials aspects of fat mimetics for food development.




Evaluation Technologies for Food Quality


Book Description

Evaluation Technologies for Food Quality summarizes food quality evaluation technologies, which include sensory evaluation techniques and chemical and physical analysis. In particular, the book introduces many novel micro and nano evaluation techniques, such as atomic force microscopy, scanning electron microscopy, and other nanomaterial-based methods. All topics cover basic principles, procedures, advantages, limitations, recent technology development, and application progress in different types of foods. This book is a valuable resource for scientists in the field of food science, engineering, and professionals in the food industry, as well as for undergraduate and postgraduate students studying food quality evaluation technology. - Explains basic principles, procedures, advantages, limitations, and current applications of recent food quality technologies - Provides guidance on the understanding and application of food quality evaluation technology in the field of food research and food industry - Introduces many novel micro/nano evaluation techniques, such as atomic force and scanning electron microscopies and other nanomaterial-based methods




Imaging Technologies and Data Processing for Food Engineers


Book Description

Food products are complex in nature which makes their analysis difficult. Different scientific disciplines such as biochemistry, microbiology, and nutrition, together with engineering concepts are involved in their characterization. However, imaging of food materials and data analysis has gained more importance due to innovations in the food industry, as well as the emergence of food nanotechnology. Image analysis protocols and techniques can be used in food structure analysis and process monitoring. Therefore, food structure imaging is crucial for various sections of the food chain starting from the raw material to the end product. This book provides information on imaging techniques such as electron microscopy, laser microscopy, x-ray tomography, raman and infrared imaging, together with data analysis protocols. It addresses the most recent advances in imaging technologies and data analysis of grains, liquid food systems (i.e. emulsions and gels), semi-solid and solid foams (i.e. bakery products, dough, expanded snacks), protein films, fruits and vegetable confectionery and nuts. This book also: Provides in-depth view of raw material characterization and process control Covers structure-functionality and structure-texture relationships Reviews applications to emerging areas of food science with an insight into future trends.




Handbook of Food Structure Development


Book Description

The most useful properties of food, i.e. the ones that are detected through look, touch and taste, are a manifestation of the food’s structure. Studies about how this structure develops or can be manipulated during food production and processing are a vital part of research in food science. This book provides the status of research on food structure and how it develops through the interplay between processing routes and formulation elements. It covers food structure development across a range of food settings and consider how this alters in order to design food with specific functionalities and performance. Food structure has to be considered across a range of length scales and the book includes a section focusing on analytical and theoretical approaches that can be taken to analyse/characterise food structure from the nano- to the macro-scale. The book concludes by outlining the main challenges arising within the field and the opportunities that these create in terms of establishing or growing future research activities. Edited and written by world class contributors, this book brings the literature up-to-date by detailing how the technology and applications have moved on over the past 10 years. It serves as a reference for researchers in food science and chemistry, food processing and food texture and structure.




Annual Reports on NMR Spectroscopy


Book Description

Annual Reports on NMR Spectroscopy, Volume 100, is a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications in NMR spectroscopy. Chapters in this new release cover In Operando NMR Studies, Recent Developments in Automotive Differential Analysis of NMR Results, Applications of SIMPSON to NMR Studies of Peptides and Proteins, Recent Developments in NMR Line Shape Analysis, and more.