Ocean Processes in Climate Dynamics


Book Description

One of the most crucial but still very poorly understood topics of oceanographic science is the role of ocean processes in contributing to the dynamics of climate and global change. This book presents a series of high level lectures on the major categories of ocean/atmosphere processes. Three of these major issues are the focus of the lectures: (1) air--sea interaction processes; (2) water mass formation, dispersion and mixing; (3) general circulation, with specific emphasis on the thermohaline component. Global examples in the world ocean are provided and discussed in the lectures. In parallel, the Mediterranean Sea is a laboratory basin in providing analogues of the above global processes relevant to climate dynamics. They include the Mediterranean thermohaline circulation with its own `conveyor belt'; intermediate and deep water mass formation and transformations, dispersion and mixing. No other book in the field provides a review of fundamental lectures on these processes, coupled with global examples and their Mediterranean analogues.




The Ocean and Cryosphere in a Changing Climate


Book Description

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.










Interacting Climates of Ocean Basins


Book Description

A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.







Measuring Ocean Currents


Book Description

Measuring Ocean Currents: Tools, Technologies, and Data covers all major aspects of ocean current measurements in view of the implications of ocean currents on changing climate, increasing pollution levels, and offshore engineering activities. Although more than 70% of the Earth is covered by ocean, there is limited information on the countless fine- to large-scale water motions taking place within them. This book fills that information gap as the first work that summarizes the state-of-the-art methods and instruments used for surface, subsurface, and abyssal ocean current measurements. Readers of this book will find a wealth of information on Lagrangian measurements, horizontal mapping, imaging, Eulerian measurements, and vertical profiling techniques. In addition, the book describes modern technologies for remote measurement of ocean currents and their signatures, including HF Doppler radar systems, satellite-borne sensors, ocean acoustic tomography, and more. Crucial aspects of ocean currents are described in detail as well, including dispersion of effluents discharged into the sea and transport of beneficial materials—as well as environmentally hazardous materials—from one region to another. The book highlights several important practical applications, showing how measurements relate to climate change and pollution levels, how they affect coastal and offshore engineering activities, and how they can aid in tsunami detection. - Coverage of measurement, mapping and profiling techniques - Descriptions of technologies for remote measurement of ocean currents and their signatures - Reviews crucial aspects of ocean currents, including special emphasis on the planet-spanning thermohaline circulation, known as the ocean's "conveyor belt," and its crucial role in climate change







Numerical Models of Oceans and Oceanic Processes


Book Description

Oceans play a pivotal role in our weather and climate. Ocean-borne commerce is vital to our increasingly close-knit global community. Yet we do not fully understand the intricate details of how they function, how they interact with the atmosphere, and what the limits are to their biological productivity and their tolerance to wastes. While satellites are helping us to fill in the gaps, numerical ocean models are playing an important role in increasing our ability to comprehend oceanic processes, monitor the current state of the oceans, and to a limited extent, even predict their future state.Numerical Models of Oceans and Oceanic Processes is a survey of the current state of knowledge in this field. It brings together a discussion of salient oceanic dynamics and processes, numerical solution methods, and ocean models to provide a comprehensive treatment of the topic. Starting with elementary concepts in ocean dynamics, it deals with equatorial, mid-latitude, high latitude, and coastal dynamics from the perspective of a modeler. A comprehensive and up-to-date chapter on tides is also included. This is followed by a discussion of different kinds of numerical ocean models and the pre- and post-processing requirements and techniques. Air-sea and ice-ocean coupled models are described, as well as data assimilation and nowcast/forecasts. Comprehensive appendices on wavelet transforms and empirical orthogonal functions are also included.This comprehensive and up-to-date survey of the field should be of interest to oceanographers, atmospheric scientists, and climatologists. While some prior knowledge of oceans and numerical modeling is helpful, the book includes an overview of enough elementary material so that along with its companion volume, Small Scale Processes in Geophysical Flows, it should be useful to both students new to the field and practicing professionals.* Comprehensive and up-to-date review* Useful for a two-semester (or one-semester on selected topics) graduate level course* Valuable reference on the topic* Essential for a better understanding of weather and climate