Impact of Electric Vehicle Charging on Grid Energy Buffering


Book Description

Variable renewable energy (VRE), such as photovoltaic solar and wind turbines, will require new approaches to buffering energy within the grid. This must include significant ancillary services and longer duration storage to buffer seasonal variations in supply and demand. Such services may be economically provided by leveraging the battery resources of electric vehicles (EVs) for frequency response and energy storage for durations of up to a few hours, together with baseload and dispatchable power for longer duration buffering. Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022022




Sustainable Interdependent Networks


Book Description

This book focuses on the theory and application of interdependent networks. The contributors consider the influential networks including power and energy networks, transportation networks, and social networks. The first part of the book provides the next generation sustainability framework as well as a comprehensive introduction of smart cities with special emphasis on energy, communication, data analytics and transportation. The second part offers solutions to performance and security challenges of developing interdependent networks in terms of networked control systems, scalable computation platforms, and dynamic social networks. The third part examines the role of electric vehicles in the future of sustainable interdependent networks. The fourth and last part of this volume addresses the promises of control and management techniques for the future power grids.




Electric Vehicle Recharge Time, Reliability, and Interoperability


Book Description

As more consumers and operators adopt electric vehicles (EVs) as personal and fleet vehicles, questions regarding recharge time, reliability, and interoperability of EV supply equipment and charging systems currently in use across North America and Europe remain. The current lack of understanding has led to consumer anxiety and, in some cases, inadvertent abuse and mishandling of electric supply equipment. Electric Vehicle Recharge Time, Reliability, and Interoperability navigates issues such as charging equipment reliability; the complexity Interoperability concerning charging networks, EVs, and payment systems; various public and private charging network issues; and lagging regulations and standards. While many challenges need to be addressed, this report also identifies the improvements made since early adoption of EV charging technology as well as ongoing efforts to improve it further. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022028




Electric Vehicles: Prospects and Challenges


Book Description

Electric Vehicles: Prospects and Challenges looks at recent design methodologies and technological advancements in electric vehicles and the integration of electric vehicles in the smart grid environment, comprehensively covering the fundamentals, theory and design, recent developments and technical issues involved with electric vehicles. Considering the prospects, challenges and policy status of specific regions and vehicle deployment, the global case study references make this book useful for academics and researchers in all engineering and sustainable transport areas. - Presents a systematic and integrated reference on the essentials of theory and design of electric vehicle technologies - Provides a comprehensive look at the research and development involved in the use of electric vehicle technologies - Includes global case studies from leading EV regions, including Nordic and European countries China and India




Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies


Book Description

This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al.




Final Disposition of Electric Vehicle Batteries


Book Description

The battery electric vehicle (EV) industry has experienced considerable growth over the last few years, demonstrating a clear acceleration in adoption and deployment. However, there are still many questions concerning what will happen to batteries as they reach their end of life (EOL), as batteries that have “aged out” can either be reused, recycled, or go to a landfill. Final Disposition of Electric Vehicle Batteries addresses some unsettled issues around lithium-ion battery reuse and recycling. Insufficient investment and regulations are a current barrier to a robust reuse system, and safety concerns potentially hinder adoption. Despite the benefits of battery recycling, there are also many challenges when considering their transportation and disassembly. These challenges will need to be addressed as the industry sees an influx of EV batteries reaching their EOL within the next 10 years. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022026




The Role of Hybrid Vehicles in a Net-zero Transport System


Book Description

As the world looks to net-zero emissions goals, hybrid electric vehicles may play an increasingly important role. For passenger electric vehicles (EVs) that predominantly make short journeys but occasionally need to make longer trips, electrofuel range extension may be more cost effective than either hydrogen or rapid charging. Micro gas turbines and catalytic combustion show significant potential to deliver low-cost, low-maintenance, lightweight engines with virtually no emissions, and hydrocarbon consuming solid oxide fuel cells show even greater potential in these areas. Aditioanlly, sodium-ion batteries for EVs, dispatachable vehicle-to-grid power and buffering, and variable intermittent renewable energy could also play key roles. The Role of Hybrid Vehicles in a Net-zero Transport System explores the costs, considerations, and challenges facing these technologies. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024021




Distributed Energy Resources and Electric Vehicle


Book Description

Explore the prospective developments in energy systems and transportation through an in-depth examination of Distributed Energy Resources and Electric Vehicle: Analysis and Optimisation of Network Operations . This innovative publication explores the realm of renewable energy, electric vehicles, and their in uence on network operations, offering valuable perspectives for readers from diverse disciplines. This extensive publication delves into the complex interplay between distributed energy resources (DERs) and electric vehicles (EVs), as well as their incorporation into established power grids. The subject matter encompasses a diverse array of topics, encompassing the attributes and advantages of distributed energy resources (DERs) and electric vehicles (EVs), obstacles related to grid integration, efficient allocation of resources, and strategies pertaining to demand response. The book offers a comprehensive exploration of system analysis and optimisation techniques, emphasising the effective utilisation of distributed energy resources (DERs) and electric vehicles (EVs) in energy networks. It aims to equip readers with a robust comprehension of strategies to optimise the performance and potential of DERs and EVs in this context. The book focuses on pioneering research and innovative solutions that are at the forefront of enhancing network operations. The authors demonstrate the novelty and applicability of their findings through the examination of real-world case studies and the utilisation of sophisticated mathematical models. This book serves as a highly valuable resource for individuals engaged in research, engineering, policy-making, and industry-related activities who are interested in effectively navigating the dynamic realm of energy systems and transportation. It equips them with the necessary knowledge and insights to make well-informed decisions that contribute to the attainment of a sustainable future.




Metaheuristics and Optimization in Computer and Electrical Engineering


Book Description

This book discusses different methods of modifying the original metaheuristics and their application in computer and electrical engineering. As the race to develop advanced technology accelerates, a new era of "metaheuristics" has emerged. Through researched-based techniques and collaborative problem-solving, this book helps engineers to find efficient solutions to their engineering challenges. With the help of an expert guide and the collective knowledge of the engineering community, this comprehensive guide shows readers how to use machine learning and other AI techniques to reinvent smart engineering. From understanding the fundamentals to mastering the latest metaheuristics models, this guide provides with the skills and knowledge that need to stay ahead in the technology race. In the previous volume, authors focused on the application of original metaheuristics on electrical and computer sciences. This volume learns how AI and modified metaheuristics can be used to optimize algorithms and create more efficient electrical engineering designs. It gets insights on how data can be effectively processed and discover new techniques for creating sophisticated automation systems. It maximizes the potential of readers’ computer and electrical engineering projects with powerful metaheuristics and optimization techniques.




Hidden Costs of Energy


Book Description

Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.