Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas


Book Description

From a new perspective, namely focusing on the interaction of selenium and mercury, this thesis provides new insights into traditional research on biogeochemical cycles of mercury in soil-plant interaction and associated human exposure and risks. The subject of this thesis is both valuable and timely, providing essential information not only on selenium-mercury interaction in the soil-plant system but also on how to assess the combined benefits and risk of co-exposure to mercury and selenium. This work also sheds light on future aspects regarding prevention, remediation and risk management for environmental mercury contamination. Presenting high-quality papers published in leading international SCI journals such as Environmental Health Perspectives and Environmental Science & Technology and having been recognized with the Special Award of Presidential Scholarship Award and Excellent Doctoral Dissertations Prize of the Chinese Academy of Sciences (CAS), this thesis offers a valuable resource for scientific communities, policy-makers and non-experts who are interested in this field. Dr. Hua Zhang works at the Norwegian Institute for Water Research (NIVA), Oslo, Norway.










Global Biogeochemical Cycling of Mercury


Book Description

Mercury pollution poses global human health and environmental risks. Although mercury is naturally present in the environment, human activities, such as coal burning, have increased the amount of mercury cycling among the land, atmosphere, and ocean by a factor of three to five. Emitted to the atmosphere in its elemental form, mercury travels worldwide before oxidizing to a form that deposits to ecosystems. In aquatic systems, mercury can convert into methylmercury, a potent neurotoxin. People and wildlife are exposed to methylmercury as it bioaccumulates up the food chain. Mercury continues to circulate in the atmosphere, oceans, and terrestrial system for centuries to millennia before it returns to deep-ocean sediments. Areas of uncertainty in the global biogeochemical cycle of mercury include oxidation processes in the atmosphere, land-atmosphere and ocean-atmosphere cycling, and methylation processes in the ocean. National and international policies have addressed direct mercury emissions, but further efforts to reduce risks face numerous political and technical challenges.




Selenium Assessment in Aquatic Ecosystems


Book Description

Selenium is a naturally occurring trace element that can become concentrated and released by industrial, agricultural, petrochemical and mining activities. At concentrated levels it is toxic and has polluted ecosystems around the world. This book will serve as a comprehensive practical handbook for everyone dealing with selenium in aquatic environments. It offers field-tested approaches and methods for assessment and water quality management. Using his twenty-year experience, the author discusses the effects of selenium on fish and bird populations and presents guidelines for identifying sources of pollution, interpreting selenium concentrations, assessing hazardous conditions, setting water quality criteria and ecosystem loading limits (TMDLs). He also includes a procedure for setting environmentally safe limits that ensure compliance with EPA regulations. Selenium Assessment in Aquatic Ecosystems will interest field scientists, natural resource managers, risk assessors and environmental planners.




Selenium in the Environment


Book Description

Discusses the biochemical and geological cycling of selenium (Se), its worldwide distribution, and the factors controlling its fate and transport within and between major environmental media, presenting a global assessment of selenium's complex environmental behaviour. The focus of this work is upon Se management and remediation strategies.




Ecosystem Responses to Mercury Contamination


Book Description

As rising levels of mercury in the environment pose an increasing threat of toxicity to humans and wildlife, several laws already call for industries to reduce mercury emissions at the source. Ecosystem Responses to Mercury Contamination: Indicators of Change outlines the infrastructure and methods needed to measure, monitor, and regulate the conce




Future Trends in Environmental Mercury Concentrations


Book Description

In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg) exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests from relatively unpolluted ecosystems is needed to minimize exposure risks.




An Investigation of the Major Transformations and Loss Mechanisms of Mercury and Selenium in the Surface Ocean


Book Description

The importance of methylmercury (CH3Hg) photochemical degradation, an understudied process in marine ecosystems, was investigated in variety of coastal and oceanic waters from the northeastern U.S. as well as the Atlantic, Pacific and Arctic Oceans. Degradation rate constants ranged from 0.87 to 1.67 day-1,but did not correlate with the environmental parameters measured. Further experiments investigating the reaction mechanism observed little effect of nitrate, chloride, and bromide ions. CH3Hg loss per year due to photodegradation was modeled across latitudes from the Equator to the Arctic using water column integrated rates determined for coastal wetlands, estuaries and the open ocean. A global photochemical demethylation rate of 25.3 Mmol yr-1 was calculated, representing an important flux in the biogeochemical cycle of CH3Hg. Air-sea exchange of elemental mercury (Hg0), another important process in the biogeochemical cycle of Hg, was investigated on the U.S. GEOTRACES cruise in the Arctic Ocean in 2015. High resolution measurements of Hg0 in surface waters and the atmosphere were used to calculate evasional fluxes, and Hg concentrations determined in aerosols and precipitation were used to estimate atmospheric deposition. Overall, concentrations of dissolved Hg0 were near saturation in ice-free waters (32 ± 30 fM), but were highly enriched under contiguous ice (101 ± 98 fM, up to 544 fM). Predicted peaks in Hg0 evasion, although blocked by the sea ice barrier, were as high as 270 pmol m-2 h-1. From these estimates we can better predict the effect of a changing climate on Hg dynamics in the Arctic. The photochemical cycling of selenium (Se), an essential micronutrient, was also studied in marine waters. Inorganic Se(IV) and Se(VI) were found in nutrient-type distributions in samples collected during the Metzyme cruise on the equatorial Pacific Ocean in 2011. Photochemically mediated redox transformation pathways studied could not explain the enhanced concentrations of Se(IV) observed, indicating that a biological process is likely involved. Photodegradation was an important sink of dimethyl selenide ((CH3)2Se) in a variety of natural waters, with reaction rate constants ranging from 18.1 to 47.0 day-1. The global loss of (CH3)2Se due to photodegradation was estimated at 28.0 Gmol yr-1.