Implementing Models in Quantitative Finance: Methods and Cases


Book Description

This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. The first part develops a toolkit in numerical methods for finance. The second part proposes twenty self-contained cases covering model simulation, asset pricing and hedging, risk management, statistical estimation and model calibration. Each case develops a detailed solution to a concrete problem arising in applied financial management and guides the user towards a computer implementation. The appendices contain "crash courses" in VBA and Matlab programming languages.




Implementing Models in Quantitative Finance: Methods and Cases


Book Description

This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. The first part develops a toolkit in numerical methods for finance. The second part proposes twenty self-contained cases covering model simulation, asset pricing and hedging, risk management, statistical estimation and model calibration. Each case develops a detailed solution to a concrete problem arising in applied financial management and guides the user towards a computer implementation. The appendices contain "crash courses" in VBA and Matlab programming languages.




Quantitative Methods for Finance and Investments


Book Description

Quantitative Methods for Finance and Investments ensures that readers come away from reading it with a reasonable degree of comfort and proficiency in applying elementary mathematics to several types of financial analysis. All of the methodology in this book is geared toward the development, implementation, and analysis of financial models to solve financial problems.




A Guide to Quantitative Finance


Book Description

Are you applying quantitative methods without a full understanding of how they really work? Bridging the gap between mathematical theory and financial practice, A Guide to Quantitative Finance provides you with all the tools and techniques to comprehend and implement the quantitative models adopted in the financial markets.




Operations Research Models in Quantitative Finance


Book Description

The articles included in the volume cover a range of diverse topics linked by a common theme: the use of formal modelling techniques to promote better understanding of financial markets and improve management of financial operations. Apart from a theoretical discussion, most of the papers model validation or verification using market data. This collection of articles sets the framework for other studies that could link theory and practice.




Quantitative Finance


Book Description

Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.




Multi-factor Models and Signal Processing Techniques


Book Description

With recent outbreaks of multiple large-scale financial crises, amplified by interconnected risk sources, a new paradigm of fund management has emerged. This new paradigm leverages “embedded” quantitative processes and methods to provide more transparent, adaptive, reliable and easily implemented “risk assessment-based” practices. This book surveys the most widely used factor models employed within the field of financial asset pricing. Through the concrete application of evaluating risks in the hedge fund industry, the authors demonstrate that signal processing techniques are an interesting alternative to the selection of factors (both fundamentals and statistical factors) and can provide more efficient estimation procedures, based on lq regularized Kalman filtering for instance. With numerous illustrative examples from stock markets, this book meets the needs of both finance practitioners and graduate students in science, econometrics and finance. Contents Foreword, Rama Cont. 1. Factor Models and General Definition. 2. Factor Selection. 3. Least Squares Estimation (LSE) and Kalman Filtering (KF) for Factor Modeling: A Geometrical Perspective. 4. A Regularized Kalman Filter (rgKF) for Spiky Data. Appendix: Some Probability Densities. About the Authors Serge Darolles is Professor of Finance at Paris-Dauphine University, Vice-President of QuantValley, co-founder of QAMLab SAS, and member of the Quantitative Management Initiative (QMI) scientific committee. His research interests include financial econometrics, liquidity and hedge fund analysis. He has written numerous articles, which have been published in academic journals. Patrick Duvaut is currently the Research Director of Telecom ParisTech, France. He is co-founder of QAMLab SAS, and member of the Quantitative Management Initiative (QMI) scientific committee. His fields of expertise encompass statistical signal processing, digital communications, embedded systems and QUANT finance. Emmanuelle Jay is co-founder and President of QAMLab SAS. She has worked at Aequam Capital as co-head of R&D since April 2011 and is member of the Quantitative Management Initiative (QMI) scientific committee. Her research interests include SP for finance, quantitative and statistical finance, and hedge fund analysis.




Financial Modeling Using R


Book Description

This is a programming book written by a finance professor. This book will be an ideal textbook for many quantitative finance courses, such as (next generation) financial modeling, portfolio theory, empirical research in finance, computational finance, and risk management. The book has three unique characteristics: (1) use free software; (2) combine programming with various finance theories, such as ratio analysis, CAPM, Fama-French 5-factor model, portfolio theory, options and futures, credit analysis, VaR (Value at Risk), and Monte Carlo Simulation; and (3) download and process publicly available financial and economic data from various sources, such as Yahoo! Finance, Google Finance, FRED (Federal Reserve Bank's Economic Data Library), SEC, and Prof. French's Data Library




Introduction To Quantitative Finance, An: A Three-principle Approach


Book Description

This concise textbook provides a unique framework to introduce Quantitative Finance to advanced undergraduate and beginning postgraduate students. Inspired by Newton's three laws of motion, three principles of Quantitative Finance are proposed to help practitioners also to understand the pricing of plain vanilla derivatives and fixed income securities.The book provides a refreshing perspective on Box's thesis that 'all models are wrong, but some are useful.' Being practice- and market-oriented, the author focuses on financial derivatives that matter most to practitioners.The three principles of Quantitative Finance serve as buoys for navigating the treacherous waters of hypotheses, models, and gaps between theory and practice. The author shows that a risk-based parsimonious model for modeling the shape of the yield curve, the arbitrage-free properties of options, the Black-Scholes and binomial pricing models, even the capital asset pricing model and the Modigliani-Miller propositions can be obtained systematically by applying the normative principles of Quantitative Finance.




Computational Methods for Quantitative Finance


Book Description

Many mathematical assumptions on which classical derivative pricing methods are based have come under scrutiny in recent years. The present volume offers an introduction to deterministic algorithms for the fast and accurate pricing of derivative contracts in modern finance. This unified, non-Monte-Carlo computational pricing methodology is capable of handling rather general classes of stochastic market models with jumps, including, in particular, all currently used Lévy and stochastic volatility models. It allows us e.g. to quantify model risk in computed prices on plain vanilla, as well as on various types of exotic contracts. The algorithms are developed in classical Black-Scholes markets, and then extended to market models based on multiscale stochastic volatility, to Lévy, additive and certain classes of Feller processes. This book is intended for graduate students and researchers, as well as for practitioners in the fields of quantitative finance and applied and computational mathematics with a solid background in mathematics, statistics or economics.​