Implementing Schema-Based Instruction in the Elementary Classroom


Book Description

Solving mathematical word problems is an ongoing problem for students with both reading and math learning disabilities (Powell, 2011). As more and more students with learning disabilities are included in the general education classroom, teachers must differentiate instruction to benefit all learners. The current strategies emphasized in textbooks are misleading and too general for students who struggle (Jitendra, 2008). Schema-based instruction is an alternative problem solving strategy, which requires students to identify the underlying structure (schema) which each word problem belongs, to translate important information to a diagram, and then to solve the problem. This project uses cognitive theory as a theoretical framework and analyzes the effects of schema-based instruction on students with learning disabilities and their general education peers. Enhancement materials for implementing schema-based instruction were created so that teachers in a small, urban, parochial school could meet the mathematical needs of a diverse population of students. The key features of the enhancement materials include descriptions of each schema, directions for delivering explicit instruction, example and practice word problems, and student reference materials/manipulatives.




Solving Math Word Problems


Book Description

This is a detailed-scripted program using Schema-Based Instruction (SBI), designed as a framework for instructional implementation. It is primarily for school practitioners (e.g., special and general education teachers, school psychologists, etc.) teaching critical word problem solving skills to students with disabilities, grades 1-8.




Response to Intervention in Math


Book Description

Provides educators with instructions on applying response-to-intervention (RTI) while teaching and planning curriculum for students with learning disabilities.




Elementary and Middle School Mathematics


Book Description

Elementary and Middle School Mathematics: Teaching Developmentally provides an unparalleled depth of ideas and discussion to help teachers develop a real understanding of the mathematics they will teach and the most effective methods of teaching the various mathematics topics. This text reflects the NCTM and Common Core State Standards and the benefits of problem-based mathematics instruction. It is structured for maximum flexibility, offering 23 chapters that may be mixed and matched to fit any course or teaching approach. This comprehensive, practical text offers readers a strong theoretical perspective reflecting the most current research on how students learn mathematics, ways to best teach it, and many problem-based activities to engage students. An important reference to consult throughout a teaching career, Van de Walle, Karp and Bay-William's book helps teachers and their preK-8 students find the excitement that happens when mathematics makes sense.




Schemas in Problem Solving


Book Description

Schemas in Problem Solving introduces a new approach to the study of learning, instruction, and assessment. Focusing on the area of arithmetic story problems, Marshall shows how instruction can lead to more meaningful learning by emphasizing the ways students acquire and store knowledge in memory. She identifies major knowledge structures called schemas, describes instruction designed around theses structures, and assesses the strengths and weaknesses in the knowledge that the students demonstrate following instruction. To evaluate the success of her approach, Marshall describes traditional experiments and computer simulations of student performance.




Conceptual Model-Based Problem Solving


Book Description

Are you having trouble in finding Tier II intervention materials for elementary students who are struggling in math? Are you hungry for effective instructional strategies that will address students’ conceptual gap in additive and multiplicative math problem solving? Are you searching for a powerful and generalizable problem solving approach that will help those who are left behind in meeting the Common Core State Standards for Mathematics (CCSSM)? If so, this book is the answer for you. • The conceptual model-based problem solving (COMPS) program emphasizes mathematical modeling and algebraic representation of mathematical relations in equations, which are in line with the new Common Core. • “Through building most fundamental concepts pertinent to additive and multiplicative reasoning and making the connection between concrete and abstract modeling, students were prepared to go above and beyond concrete level of operation and be able to use mathematical models to solve more complex real-world problems. As the connection is made between the concrete model (or students’ existing knowledge scheme) and the symbolic mathematical algorithm, the abstract mathematical models are no longer “alien” to the students.” As Ms. Karen Combs, Director of Elementary Education of Lafayette School Corporation in Indiana, testified: “It really worked with our kids!” • “One hallmark of mathematical understanding is the ability to justify,... why a particular mathematical statement is true or where a mathematical rule comes from” (http://illustrativemathematics.org/standards). Through making connections between mathematical ideas, the COMPS program makes explicit the reasoning behind math, which has the potential to promote a powerful transfer of knowledge by applying the learned conception to solve other problems in new contexts. • Dr. Yan Ping Xin’s book contains essential tools for teachers to help students with learning disabilities or difficulties close the gap in mathematics word problem solving. I have witnessed many struggling students use these strategies to solve word problems and gain confidence as learners of mathematics. This book is a valuable resource for general and special education teachers of mathematics. - Casey Hord, PhD, University of Cincinnati




How Students Learn


Book Description

How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.




How Learning Works


Book Description

Praise for How Learning Works "How Learning Works is the perfect title for this excellent book. Drawing upon new research in psychology, education, and cognitive science, the authors have demystified a complex topic into clear explanations of seven powerful learning principles. Full of great ideas and practical suggestions, all based on solid research evidence, this book is essential reading for instructors at all levels who wish to improve their students' learning." —Barbara Gross Davis, assistant vice chancellor for educational development, University of California, Berkeley, and author, Tools for Teaching "This book is a must-read for every instructor, new or experienced. Although I have been teaching for almost thirty years, as I read this book I found myself resonating with many of its ideas, and I discovered new ways of thinking about teaching." —Eugenia T. Paulus, professor of chemistry, North Hennepin Community College, and 2008 U.S. Community Colleges Professor of the Year from The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education "Thank you Carnegie Mellon for making accessible what has previously been inaccessible to those of us who are not learning scientists. Your focus on the essence of learning combined with concrete examples of the daily challenges of teaching and clear tactical strategies for faculty to consider is a welcome work. I will recommend this book to all my colleagues." —Catherine M. Casserly, senior partner, The Carnegie Foundation for the Advancement of Teaching "As you read about each of the seven basic learning principles in this book, you will find advice that is grounded in learning theory, based on research evidence, relevant to college teaching, and easy to understand. The authors have extensive knowledge and experience in applying the science of learning to college teaching, and they graciously share it with you in this organized and readable book." —From the Foreword by Richard E. Mayer, professor of psychology, University of California, Santa Barbara; coauthor, e-Learning and the Science of Instruction; and author, Multimedia Learning




International Handbook of Mathematical Learning Difficulties


Book Description

This comprehensive volume provides teachers, researchers and education professionals with cutting edge knowledge developed in the last decades by the educational, behavioural and neurosciences, integrating cognitive, developmental and socioeconomic approaches to deal with the problems children face in learning mathematics. The neurocognitive mechanisms and the cognitive processes underlying acquisition of arithmetic abilities and their significance for education have been the subject of intense research in the last few decades, but the most part of this research has been conducted in non-applied settings and there’s still a deep discrepancy between the level of scientific knowledge and its implementation into actual educational settings. Now it’s time to bring the results from the laboratory to the classroom. Apart from bringing the theoretical discussions to educational settings, the volume presents a wide range of methods for early detection of children with risks in mathematics learning and strategies to develop effective interventions based on innovative cognitive test instruments. It also provides insights to translate research knowledge into public policies in order to address socioeconomic issues. And it does so from an international perspective, dedicating a whole section to the cultural diversity of mathematics learning difficulties in different parts of the world. All of this makes the International Handbook of Mathematical Learning Difficulties an essential tool for those involved in the daily struggle to prepare the future generations to succeed in the global knowledge society.




Teaching Students with Moderate and Severe Disabilities


Book Description

This book has been replaced by Teaching Students with Moderate and Severe Disabilities, Second Edition, 978-1-4625-4238-3.