Using Classroom Assessment to Improve Student Learning


Book Description

Linking assessment to everday classroom instruction requires a shift in both thinking and practise. For many, the term assessment simply means grade. Using Classroom Assessment to Improve Student Learning shows how teachers can move away from using tests, letter or numerical grades or passing or failing as evidence of student learning to creating a rich classroom environment that is conducive to effective formative assessment.




Improving Indicators of the Quality of Science and Mathematics Education in Grades K-12


Book Description

This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.







Learning and Understanding


Book Description

This book takes a fresh look at programs for advanced studies for high school students in the United States, with a particular focus on the Advanced Placement and the International Baccalaureate programs, and asks how advanced studies can be significantly improved in general. It also examines two of the core issues surrounding these programs: they can have a profound impact on other components of the education system and participation in the programs has become key to admission at selective institutions of higher education. By looking at what could enhance the quality of high school advanced study programs as well as what precedes and comes after these programs, this report provides teachers, parents, curriculum developers, administrators, college science and mathematics faculty, and the educational research community with a detailed assessment that can be used to guide change within advanced study programs.




The Knowledge Gap


Book Description

The untold story of the root cause of America's education crisis--and the seemingly endless cycle of multigenerational poverty. It was only after years within the education reform movement that Natalie Wexler stumbled across a hidden explanation for our country's frustrating lack of progress when it comes to providing every child with a quality education. The problem wasn't one of the usual scapegoats: lazy teachers, shoddy facilities, lack of accountability. It was something no one was talking about: the elementary school curriculum's intense focus on decontextualized reading comprehension "skills" at the expense of actual knowledge. In the tradition of Dale Russakoff's The Prize and Dana Goldstein's The Teacher Wars, Wexler brings together history, research, and compelling characters to pull back the curtain on this fundamental flaw in our education system--one that fellow reformers, journalists, and policymakers have long overlooked, and of which the general public, including many parents, remains unaware. But The Knowledge Gap isn't just a story of what schools have gotten so wrong--it also follows innovative educators who are in the process of shedding their deeply ingrained habits, and describes the rewards that have come along: students who are not only excited to learn but are also acquiring the knowledge and vocabulary that will enable them to succeed. If we truly want to fix our education system and unlock the potential of our neediest children, we have no choice but to pay attention.




Visible Learning for Mathematics, Grades K-12


Book Description

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.




Handbook of Research Design in Mathematics and Science Education


Book Description

The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.




Professional Standards for Teaching Mathematics


Book Description

Authorized Teacher resource for Mathematics, K-12 in Alberta. 1991-2001.




Uncovering Student Thinking in Mathematics


Book Description

"Uncovering Student Thinking in Mathematics shows us ways to listen and observe children and their mathematical understandings so we can find better ways to help them take their next learning steps. This book is a gift to educators who ′seek to understand before being understood.′" —From the Foreword by Anne Davies "A fresh and unique resource for mathematics teachers who recognize the importance of carefully establishing the starting points of instruction in terms of what students already know. The collection of assessment probes is inventive, engaging for students, and invaluable for teachers." —Richard H. Audet, Associate Professor, Roger Williams University Use formative assessment probes to take the guesswork out of mathematics instruction and improve learning! Students learn at varying rates, and if a misconception in mathematics develops early, it may be carried from year to year and obstruct a student′s progress. To identify fallacies in students′ preconceived ideas, Uncovering Student Thinking in Mathematics offers educators a powerful diagnostic technique in the form of field-tested assessment probes—brief, easily administered activities to determine students′ thinking on core mathematical concepts. Designed to question students′ conceptual knowledge and reveal common understandings and misunderstandings, the probes generate targeted information for modifying mathematics instruction, allowing teachers to build on students′ existing knowledge and individually address their identified difficulties. Linked to National Council of Teachers of Mathematics standards, this invaluable handbook assists educators with: 25 ready-to-use mathematical probes Teacher guides for implementing each probe at any grade level Examples of typical obstacles and faulty thinking demonstrated by students This rich resource combines standards, educational research findings, and practical craft knowledge to help teachers deliver informed instruction that strengthens all students′ learning and achievement in mathematics.




Designing Mathematics or Science Curriculum Programs


Book Description

With the publication of the National Science Education Standards and the National Council of Teachers of Mathematics' Curriculum and Evaluation Standards for School Mathematics, a clear set of goals and guidelines for achieving literacy in mathematics and science was established. Designing Mathematics or Science Curriculum Programs has been developed to help state- and district-level education leaders create coherent, multi-year curriculum programs that provide students with opportunities to learn both mathematics and science in a connected and cumulative way throughout their schooling. Researchers have confirmed that as U.S. students move through the grade levels, they slip further and further behind students of other nations in mathematics and science achievement. Experts now believe that U.S. student performance is hindered by the lack of coherence in the mathematics and science curricula in many American schools. By structuring curriculum programs that capitalize on what students have already learned, the new concepts and processes that they can learn will be richer, more complex, and at a higher level. Designing Mathematics or Science Curriculum Programs outlines: Components of effective mathematics and science programs. Criteria by which these components can be judged. A process for developing curriculum that is structured, focused, and coherent. Perhaps most important, this book emphasizes the need for designing curricula across the entire 13-year span that our children spend in elementary and secondary school as a way to improve the quality of education. Ultimately, it will help state and district educators use national and state standards to design or re-build mathematics and science curriculum programs that develop new ideas and skills based on earlier onesâ€"from lesson to lesson, unit to unit, year to year. Anyone responsible for designing or influencing mathematics or science curriculum programs will find this guide valuable.