In-Vessel Melt Retention and Ex-Vessel Corium Cooling: IAEA Tecdoc No. 1906


Book Description

This publication results from a technical meeting on phenomenology and technologies relevant to in-vessel melt retention (IVMR) and ex-vessel corium cooling (EVCC). The purpose of the publication is to capture the state of knowledge, at the time of that meeting, related to phenomenology and technologies as well as the challenges and pending issues relevant to IVMR and EVCC for water cooled reactors by summarizing the information provided by the meeting participants in a form useful to practitioners in Member States.




Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies


Book Description

Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies, edited by Dr. Rahman and Dr. Ojovan, presents the latest knowledge and research on the management of cementitious systems within nuclear power plants. The book covers aging, development and updates on regulatory frameworks on a global scale, the development of cementitious systems for the immobilization of problematic wastes, and the decommissioning and decontamination of complex cementitious systems. The book's editors and their team of experts combine their practical knowledge to provide the reader with a thorough understanding on the sustainability of lifecycle management of cementitious systems within the nuclear industry. Sections provide a comparative tool that presents national regulations concerning cementitious systems within nuclear power plants, check international and national evaluation results of the sustainability of different systems, help in the development of performance test procedures, and provide a guide on aging nuclear power plants and the long-term behavior of these systems in active and passive safety environments. - Presents the latest information on the behavior of different cementitious systems used in the nuclear industry in one comprehensive resource - Includes scientific justifications of system behavior during the design, operation, maintenance and decommissioning phases - Aids the reader in the development of evaluation tests for problematic wastes




State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability


Book Description

Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures.




Energy, Electricity and Nuclear Power Estimates for the Period Up to 2020


Book Description

This is the twentieth edition of Reference Data Series No. 1, containing the most recent estimates of energy, electricity and nuclear power trends up to the year 2020. Nuclear data are based on actual statistical data collected by the IAEA's Power Reactor Information System (PRIS). Energy, electricity and population data for 1999 are estimates based on information from the Department of Economic and Social Affairs of the United Nations.




A Voyage to the North Pole


Book Description




Small Modular Reactors


Book Description

Recent interest in small modular reactors (SMRs) is being driven by a desire to reduce the total capital costs associated with nuclear power plants and to provide power to small grid systems. According to estimates available today, if all the competitive advantages of SMRs were realised, including serial production, optimised supply chains and smaller financing costs, SMRs could be expected to have lower absolute and specific (per-kWe) construction costs than large reactors. Although the economic parameters of SMRs are not yet fully determined, a potential market exists for this technology, particularly in energy mixes with large shares of renewables. This report assesses the size of the market for SMRs that are currently being developed and that have the potential to broaden the ways of deploying nuclear power in different parts of the world. The study focuses on light water SMRs that are expected to be constructed in the coming decades and that strongly rely on serial, factory-based production of reactor modules. In a high-case scenario, up to 21 GWe of SMRs could be added globally by 2035, representing approximately 3% of total installed nuclear capacity.




The EBWR


Book Description




Nuclear Reactor Technology Assessment for Near Term Deployment


Book Description

Given the increasing interest in the near term deployment of new nuclear power plants, IAEA Member States have requested guidance on the process of evaluating and selecting available technology options. Reactor technology assessment enables the evaluation, selection, and deployment of the best technology to meet the objectives of a nuclear power programme. This publication demonstrates how reactor technology assessment is performed and how the process and results of this work enable decision making in nuclear power planning. The approach also provides decision makers with the documentation necessary to support their conclusions.







Cement Based Materials


Book Description

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.