In Vitro Prevascularization of 3D Tissue Constructs


Book Description

There is a need for more effective therapies to combat breast cancer. One reason for the inefficiency of therapeutics is that testing technologies currently employed in drug discovery and development are not reliable when transitioning drugs into human clinical trials. To supplement the currently used in vitro cell culture studies and in vivo animal studies, an in vitro three-dimensional breast tumor system has been suggested with integration of human cells, hydrogel biomaterials, 3D architecture, and endothelialized microchannels. Therefore, the objective of the thesis project, as an initial step in fabrication of the supplemental system for drug testing, is to fabricate and characterize a tissue volume with pre-fabricated EC-lined microchannels representing the vasculature of a breast tumor. It is hypothesized that an in vitro three-dimensional microphysiologic system can be constructed with extracellular matrix and flow-through microchannels that will support a confluent endothelial layer. Results have shown that fabricated threedimensional microenvironments, composed of extracellular matrix components, had a matrix elasticity similar to that of normal mammary tissue. An iterative design process of bioreactor fabrication led to a bioreactor that could contain a three-dimensional scaffold with a mean wall shear stress in the range of 0-5 dyne/cm2 inside the microchannels. In addition, the bioreactor system and endothelialization protocol facilitated the localization and attachment of endothelial cells inside the prefabricated microchannels. Future work will include further characterization of endothelial cell morphology and function and assessment of barrier function and permeability of the engineered endothelium. Continuation of this proof-of-concept project will lead to the formation of a confluent endothelial cell monolayer, which may be used to perfuse the three-dimensional tissue-engineered scaffold, to act as a dissemination route for tumor cells, or to act as a route for therapeutics to the tumor site.




3D Bioprinting in Regenerative Engineering


Book Description

Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications




Biofabrication and 3D Tissue Modeling


Book Description

3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. The two key drivers of this upsurge in research lie in its potential to offer a way to reduce animal testing with respect to biotoxicity analysis, preferably on physiology recapitulated human tissues and, additionally, provides an alternative approach to regenerative medicine. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field. Beginning with the basic principles of 3D tissue modelling, the reader will find expert reviews on key fabrication technologies and processes, including microfluidics, microfabrication technology such as 3D bioprinting, and programming approaches to emulating human tissue complexity. The next stage introduces the reader to a range of materials used for 3D tissue modelling, from synthetic to natural materials, as well as the emerging field of tissue derived decellularized extracellular matrix (dECM). A whole host of critical applications are covered, with several chapters dedicated to hard and soft tissues, as well as focused reviews on the respiratory and central nervous system. Finally, the development of in vitro tissue models to screen drugs and study progression and etiologies of diseases, with particular attention paid to cancer, can be found.




Development of an Advanced 3D Culture System for Human Cardiac Tissue Engineering


Book Description

"Ischemic heart disease is a major cause of human death worldwide owing to the heart minimal ability to repair following injury. Other than heart transplantation, there are currently no effective or long-lasting therapies for end-stage heart failure. Therefore, it is crucial to develop not only alternative therapies that potentiate heart regeneration or repair, but also new tools to study human cardiac physiology and pathophysiology in vitro. In this context, cardiac tissue engineering arises a promising strategy, as it is aimed at generating cardiac tissue analogues that would act as in vitro models of human cardiac tissue or as surrogates for heart repair. Thus, having 3D human cardiac tissue constructs resembling human myocardium could revolutionize drug discovery and toxicity testing, cardiac disease modelling and regenerative medicine. An strategy to obtain reliable cardiac tissue constructs is to mimic the native cardiac environment. The classical approach is based on seeding cardiomyocytes in biocompatible 3D scaffolds, and then culturing the construct in a biomimetic signaling system, usually a bioreactor. Although major advances have been made, the generation of thick and mature tissue constructs from human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CM) is still a challenge. Therefore, the hypothesis of our study is that the combination of hiPSC-CM with 3D scaffolds and appropriate regulatory signals may lead to the generation of mature human cardiac tissue constructs resembling human myocardium, both functionally and structurally. To address this, we have characterized a collagen-based 3D scaffold and established an efficient method for cell seeding into the scaffold. We have also developed a parallelized perfusion bioreactor system, which ensures an effective mass transport between cells and culture medium and allows culturing multiple replicas of tissue constructs. In addition, we have designed and fabricated a perfusion chamber including electrodes to electrically stimulate cells during culture, as well as to monitor tissue function. With this advanced 3D culture system, we have been able to generate thick 3D human cardiac constructs with tissue-like functionality. Our results indicate that perfusion of culture medium combined with electrical stimulation and collagen-based scaffold improve the structural and functional maturation of hiPSC-CM. In general terms, electrical stimulation has improved the structural organization, alignment and coupling of cardiomyocytes in our cardiac tissue constructs. Moreover, electrical stimulation has promoted the formation of synchronous contractile constructs at the macroscale with improved electrophysiological functions. Through the development of a new electrophysiological recording system, we report for the first time to our knowledge a technique that provides information about the electrical activity of intact cardiac tissue constructs in real time. Specifically, the combination of action potentials generated by hiPSC-CM composing cardiac constructs produces ECG-like signals, which could be monitored online. Finally, we have demonstrated the ability of stimulated human cardiac tissue constructs to detect drug-induced cardiotoxicity, as typical features of arrhythmias (e.g. prolongation of RR intervals and regular blockades) could be observed upon treatment with sotalol. Taken together, results indicate that macroscopic human cardiac tissue constructs with tissue-like functionality can be obtained through the use of our advanced 3D culture system. We have studied the effects of electrical stimulation on cardiomyocytes at multiple levels: molecular (presence, distribution and expression of cardiac proteins), ultrastructural (sarcomere width and presence of specialized cellular junctions), cellular (morphology and alignment), and functional (amplitude, directionality and strain of contractions, and electrophysiological recordings). Findings validate our in vitro approach as a valuable system to obtain 3D cardiac patches with an improved maturity and functionality. Importantly, the online monitoring system developed in this study can provide essential electrophysiological information of intact cardiac tissue constructs, which opens up myriad possibilities in the field of cardiovascular research." -- TDX.




Tissue Engineering for Artificial Organs, 2 Volume Set


Book Description

A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.




Engineering Three-dimensional Vessel Networks


Book Description

The survival of thick artificial tissue in vivo requires the formation of three dimensional vessel networks that can anastomose with host vasculature and transport blood to the central part of the tissue quickly after implantation. In this study, a prevascularization strategy was used to create vessel networks in the engineered tissue constructs. The prevascularized tissue model was developed by co-culture of human umbilical vein endothelial cells (HUVECs) and fibroblasts in a fibrin gel. Interconnected vessel networks with visible lumens were developed within the tissue construct in 1 week. In order to demonstrate whether the preformed vessel networks can be functional in vivo, the prevascularized tissue as well as unprevascularized controls were implanted subcutaneously on the dorsal surface of immune-deficient mice. HUVEC-lined vessels containing red blood cells were evident in the prevascularized tissue by day 5, significantly earlier than non-prevascularized tissues (14 days). In addition, collagen deposition and larger number of proliferating cells were observed in the prevascularized tissue indicating higher level of cell viability. In order to further reduce the time required for the formation of functional anstomosis, the seeding density of HUVECs and fibroblasts were optimized. The development of vessel networks in vitro and the formation of functional anastomosis in vivo were significantly accelerated at the presence of high density of fibroblasts (2 million/ml) compared to low density of fibroblasts (0.2 million/ml). Finally, HUVECs were replaced by the endothelial cells derived from cord blood endothelial progenitor cells (EPC-ECs). Vessels formed with EPC-ECs showed similar kinetics as HUVECs in vitro. However, implantation of the prevascularized tissue construct in mice revealed a dramatic difference in the ability of EPC-ECs and HUVECs to form anastomosis with the host vasculature. Vascular beds derived from EPC-ECs were perfused within one day of implantation whereas no HUVEC vessels were perfused at day 1. Furthermore, while almost 90% of EPC-EC derived vessel networks were perfused at day 3, only one third of HUVEC derived vascular beds were perfused. These results demonstrated that prevascularization of engineered tissue constructs with well developed vessel network is an effective strategy to achieve fast perfusion of the engineered tissue constructs in vivo after implantation. This method will potentially facilitate the development of large three dimensional engineered tissues.




Vascularization for Tissue Engineering and Regenerative Medicine


Book Description

This reference work presents the basic principles of angiogenesis induction, including the roles of signaling factors such as hypoxia-inducible factors, biophysical stimulation and angiogenic cells. The book also covers lymphogenesis induction. Both the established fundamentals in the field as well as new trends in the vascularization of engineered tissues are discussed. These include pre-vascularization strategies using preparation of channeled scaffolds and preparation of decellularized blood vessel trees, approaches to inducing formation of microvasculature and approaches to inducing the growth of vascular networks. The authors expand on these concepts with current studies of dual-level approaches to engineer vascularized tissue composites. The book concludes with a discussion of current clinical approaches and the use of vascular grafts in the context of providing clinical practice with new tissue engineering strategies.




Polymer-Based Additive Manufacturing


Book Description

This book aims to give readers a basic understanding of commonly used additive manufacturing techniques as well as the tools to fully utilise the strengths of additive manufacturing through the modelling and design phase all the way through to post processing. Guidelines for 3D-printed biomedical implants are also provided. Current biomedical applications of 3D printing are discussed, including indirect applications in the rapid manufacture of prototype tooling and direct applications in the orthopaedics, cardiovascular, drug delivery, ear-nose-throat, and tissue engineering fields. Polymer-Based Additive Manufacturing: Biomedical Applications is an ideal resource for students, researchers, and those working in industry seeking to better understand the medical applications of additive manufacturing.




Cardiac Regeneration


Book Description

This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.




Frontiers in Tissue Engineering


Book Description

Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.