In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations


Book Description

Isolated Cells and Perfused Organs 1. O. Kaplan, P.C.M. van Zijl, J.S. Cohen, Washington, DC/USA NMR Studies of Metabolism of Cells and Perfused Organs Individual Nuclei 2. S.R. Williams, London, UK In Vivo Proton Spectroscopy: Experimental Asoects and Potential 3. N. Beckmann, Basel, Switzerland In Vivo 13C Spectroscopy in Humans 4. M.J.W. Prior, R.J. Maxwell, J.R. Griffiths, London, UK Fluorine - 19F NMR Spectroscopy and Imaging In Vivo 5. J.S. Ingwall, Boston, MA/USA Measuring Cation Movements Across the Cell Wall Using NMR Spectroscopy: Sodium Movements in Striated Muscle 6. M. Rudin, A. Sauter, Basel, Switzerland In Vivo Phosphorus-31 NMR: Potential and Limitations.




In-Vivo Magnetic Resonance Spectroscopy II: Localization and Spectral Editing


Book Description

Localization 1. C.S. Bosch, J.J.H. Ackerman, St. Louis, MO/USA SurfaceCoil Spectroscopy 2. P. Styles, Oxford, UK Rotating Frame Spectroscopyand Spectroscopic Imaging 3. P.A. Bottomley, Schenectady, NY/USA DepthResolved Surface Coil Spectroscopy (Dress) 4. R.J. Ordidge, J.A. Helpern, Detroit, MI/USA Image Guided Volume Selective Spectroscopy: A Comparison of Techniques for In-Vivo 31P NMR Spectroscopy of Human Brain 5. M. Decorps, D. Bourgeois, Grenoble, France Localized Spectroscopy Using Static Magnetic Field Gradients: Comparison of Techniques 6. J.A. den Hollander, P.R. Luyten, Ad J.H. Marien, Best, The Netherlands 1H NMR Spectroscopy and Spectroscopic Imaging of the Human Brain Spectral Editing and Kinetic Measurements 7. H.P. Hetherington, Birmingham, AL/USA Homo- and Heteronuclear Editing in Proton Spectroscopy 8. D. Freeman, R. Hurd, Fremont, CA/USA Metabolite Specific Methods Using Double Quantum Coherence Transfer Spectroscopy 9. B.A. Berkowitz, Research Triangle Park, NC/USA Two-Dimensional Correlated Spectroscopy In-Vivo 10. G. Navon, Tel Aviv, Israel; T. Kushnir, Tel Hashomer, Israel; N. Askenasy, O. Kaplan, Tel Aviv, Israel Two-Dimensional 31P-1H Correlation Spectroscopy in Intact Organs and Their Extracts 11. M. Rudin, A. Sauter, Basel, Switzerland Measurement of Reaction Rates In Vivo Using Magnetization Transfer Techniques







In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations


Book Description

Isolated Cells and Perfused Organs 1. O. Kaplan, P.C.M. van Zijl, J.S. Cohen, Washington, DC/USA NMR Studies of Metabolism of Cells and Perfused Organs Individual Nuclei 2. S.R. Williams, London, UK In Vivo Proton Spectroscopy: Experimental Asoects and Potential 3. N. Beckmann, Basel, Switzerland In Vivo 13C Spectroscopy in Humans 4. M.J.W. Prior, R.J. Maxwell, J.R. Griffiths, London, UK Fluorine - 19F NMR Spectroscopy and Imaging In Vivo 5. J.S. Ingwall, Boston, MA/USA Measuring Cation Movements Across the Cell Wall Using NMR Spectroscopy: Sodium Movements in Striated Muscle 6. M. Rudin, A. Sauter, Basel, Switzerland In Vivo Phosphorus-31 NMR: Potential and Limitations




In Vivo NMR Spectroscopy


Book Description

Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.




In-Vivo Magnetic Resonance Spectroscopy I: Probeheads and Radiofrequency Pulses Spectrum Analysis


Book Description

RF Probeheads 1. J. Link, Faellanden, Switzerland The Design of Resonator Probes with Homogeneous Radiofrequency Fields 2. M. Schnall, Philadelphia, PA/USA Probes Tuned to Multiple Frequencies for In-Vivo NMR RF Pulses 3. P.C.M. van Zijl, Rockville, MD/USA; C.T.W. Moonen, Bethesda, MD/USA Solvent Suppression Strategies for In Vivo Magnetic Resonance Spectroscopy 4. M. Garwood, K. Ugurbil, Minneapolis, MN/USA B1 Insensitive Adiabatic RF Pulses 5. P.G. Morris, Nottingham, UK Frequency Selective Excitation Using Phase-Compensated RF Pulses in One andTwo Dimensions 6. S. Mueller, Basel, Switzerland RF Pulses for MultipleFrequency Excitation: Theory and Application Spectrum Analysis 7. R. de Beer, D. van Ormondt, Delft, The Nethelands Analysis of NMR Data Using Time Domain Fitting Procedures 8. E.B. Cady, London, UK Determination of Absolute Concentrations of Metabolites from NMR Spectra.




MRI from Picture to Proton


Book Description

MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.







Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases


Book Description

Demonstrates how MRS offers a useful tool for the noninvasive biochemical analysis of the brain. The book covers over 70 clinical cases and more than 100 spectra that enhance skills at interpreting MRS, including minimizing errors, highlighting artifacts, and expanding the clinical usefulness of this diagnostic modality.




Modern Magnetic Resonance


Book Description

A comprehensive collection of the applications of Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Electron-Spin Resonance (ESR). Covers the wide ranging disciplines in which these techniques are used: * Chemistry; * Biological Sciences; * Pharmaceutical Sciences; * Medical uses; * Marine Science; * Materials Science; * Food Science. Illustrates many techniques through the applications described, e.g.: * High resolution solid and liquid state NMR; * Low resolution NMR, especially important in food science; * Solution State NMR, especially important in pharmaceutical sciences; * Magnetic Resonance Imaging, especially important for medical uses; * Electron Spin Resonance, especially important for spin-labelling in food, marine and medical studies.