In-Vivo Magnetic Resonance Spectroscopy I: Probeheads and Radiofrequency Pulses Spectrum Analysis


Book Description

RF Probeheads 1. J. Link, Faellanden, Switzerland The Design of Resonator Probes with Homogeneous Radiofrequency Fields 2. M. Schnall, Philadelphia, PA/USA Probes Tuned to Multiple Frequencies for In-Vivo NMR RF Pulses 3. P.C.M. van Zijl, Rockville, MD/USA; C.T.W. Moonen, Bethesda, MD/USA Solvent Suppression Strategies for In Vivo Magnetic Resonance Spectroscopy 4. M. Garwood, K. Ugurbil, Minneapolis, MN/USA B1 Insensitive Adiabatic RF Pulses 5. P.G. Morris, Nottingham, UK Frequency Selective Excitation Using Phase-Compensated RF Pulses in One andTwo Dimensions 6. S. Mueller, Basel, Switzerland RF Pulses for MultipleFrequency Excitation: Theory and Application Spectrum Analysis 7. R. de Beer, D. van Ormondt, Delft, The Nethelands Analysis of NMR Data Using Time Domain Fitting Procedures 8. E.B. Cady, London, UK Determination of Absolute Concentrations of Metabolites from NMR Spectra.




In-Vivo Magnetic Resonance Spectroscopy I: Probeheads and Radiofrequency Pulses Spectrum Analysis


Book Description

RF Probeheads 1. J. Link, Faellanden, Switzerland The Design of Resonator Probes with Homogeneous Radiofrequency Fields 2. M. Schnall, Philadelphia, PA/USA Probes Tuned to Multiple Frequencies for In-Vivo NMR RF Pulses 3. P.C.M. van Zijl, Rockville, MD/USA; C.T.W. Moonen, Bethesda, MD/USA Solvent Suppression Strategies for In Vivo Magnetic Resonance Spectroscopy 4. M. Garwood, K. Ugurbil, Minneapolis, MN/USA B1 Insensitive Adiabatic RF Pulses 5. P.G. Morris, Nottingham, UK Frequency Selective Excitation Using Phase-Compensated RF Pulses in One andTwo Dimensions 6. S. Mueller, Basel, Switzerland RF Pulses for MultipleFrequency Excitation: Theory and Application Spectrum Analysis 7. R. de Beer, D. van Ormondt, Delft, The Nethelands Analysis of NMR Data Using Time Domain Fitting Procedures 8. E.B. Cady, London, UK Determination of Absolute Concentrations of Metabolites from NMR Spectra













In-Vivo Magnetic Resonance Spectroscopy II: Localization and Spectral Editing


Book Description

Localization 1. C.S. Bosch, J.J.H. Ackerman, St. Louis, MO/USA SurfaceCoil Spectroscopy 2. P. Styles, Oxford, UK Rotating Frame Spectroscopyand Spectroscopic Imaging 3. P.A. Bottomley, Schenectady, NY/USA DepthResolved Surface Coil Spectroscopy (Dress) 4. R.J. Ordidge, J.A. Helpern, Detroit, MI/USA Image Guided Volume Selective Spectroscopy: A Comparison of Techniques for In-Vivo 31P NMR Spectroscopy of Human Brain 5. M. Decorps, D. Bourgeois, Grenoble, France Localized Spectroscopy Using Static Magnetic Field Gradients: Comparison of Techniques 6. J.A. den Hollander, P.R. Luyten, Ad J.H. Marien, Best, The Netherlands 1H NMR Spectroscopy and Spectroscopic Imaging of the Human Brain Spectral Editing and Kinetic Measurements 7. H.P. Hetherington, Birmingham, AL/USA Homo- and Heteronuclear Editing in Proton Spectroscopy 8. D. Freeman, R. Hurd, Fremont, CA/USA Metabolite Specific Methods Using Double Quantum Coherence Transfer Spectroscopy 9. B.A. Berkowitz, Research Triangle Park, NC/USA Two-Dimensional Correlated Spectroscopy In-Vivo 10. G. Navon, Tel Aviv, Israel; T. Kushnir, Tel Hashomer, Israel; N. Askenasy, O. Kaplan, Tel Aviv, Israel Two-Dimensional 31P-1H Correlation Spectroscopy in Intact Organs and Their Extracts 11. M. Rudin, A. Sauter, Basel, Switzerland Measurement of Reaction Rates In Vivo Using Magnetization Transfer Techniques.




In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations


Book Description

Isolated Cells and Perfused Organs 1. O. Kaplan, P.C.M. van Zijl, J.S. Cohen, Washington, DC/USA NMR Studies of Metabolism of Cells and Perfused Organs Individual Nuclei 2. S.R. Williams, London, UK In Vivo Proton Spectroscopy: Experimental Asoects and Potential 3. N. Beckmann, Basel, Switzerland In Vivo 13C Spectroscopy in Humans 4. M.J.W. Prior, R.J. Maxwell, J.R. Griffiths, London, UK Fluorine - 19F NMR Spectroscopy and Imaging In Vivo 5. J.S. Ingwall, Boston, MA/USA Measuring Cation Movements Across the Cell Wall Using NMR Spectroscopy: Sodium Movements in Striated Muscle 6. M. Rudin, A. Sauter, Basel, Switzerland In Vivo Phosphorus-31 NMR: Potential and Limitations.




Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters


Book Description

"This book covers the current state-of-the-art theories and applications of neural networks with high-dimensional parameters"--Provided by publisher.




NMR Imaging of Materials


Book Description

NMR imaging of materials is a field of increasing importance. Applications expand from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets, and hemodialyzers into various fields of engineering for process optimization and product and quality control, for example, of polymer materials, biomaterials, elastomers, and ceramics. While the results of NMR imaging are being appreciated in a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of humans. This book provides an introduction to NMR imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual NMR in terms of special approaches to spatial resolution like an NMR surface scanner. Special attention is paid to the large variety of ways to generate image contrast - the most prominent feature of NMR. The text is strong on methodology, and includes today's important application areas.