INCEPTION OF HIGH-VOLUME FLY ASH WITH HYBRID FIBRE BASED CONCRETE : A PERFORMER


Book Description

When infrastructure is built quickly, development occurs. Concrete is the go-to material for construction projects. Manufacturing cement is a significant contributor to atmospheric carbon dioxide. Using carbon-neutral materials like crimson mud or powdered snail shells can reduce cement's carbon dioxide emissions by half. As an adaptable alternative to traditional concrete, HVFA concrete has many uses. Long-lasting and useful in Plain Cement Concrete (PCC) projects, fly ash also enhances concrete's workability. The positive effects of fly ash on the environment, such as lower carbon dioxide emissions, are not new. Adding fly ash to concrete increases its strength and segregation, which reduces its price and makes it simpler to pump.




Encyclopedia of Renewable and Sustainable Materials


Book Description

Encyclopedia of Renewable and Sustainable Materials, Five Volume Set provides a comprehensive overview, covering research and development on all aspects of renewable, recyclable and sustainable materials. The use of renewable and sustainable materials in building construction, the automotive sector, energy, textiles and others can create markets for agricultural products and additional revenue streams for farmers, as well as significantly reduce carbon dioxide (CO2) emissions, manufacturing energy requirements, manufacturing costs and waste. This book provides researchers, students and professionals in materials science and engineering with tactics and information as they face increasingly complex challenges around the development, selection and use of construction and manufacturing materials. Covers a broad range of topics not available elsewhere in one resource Arranged thematically for ease of navigation Discusses key features on processing, use, application and the environmental benefits of renewable and sustainable materials Contains a special focus on sustainability that will lead to the reduction of carbon emissions and enhance protection of the natural environment with regard to sustainable materials




Strain-Hardening Cement-Based Composites


Book Description

This is the proceedings of the 4th International Conference on Strain-Hardening Cement-Based Composites (SHCC4), that was held at the Technische Universität Dresden, Germany from 18 to 20 September 2017. The conference focused on advanced fiber-reinforced concrete materials such as strain-hardening cement-based composites (SHCC), textile-reinforced concrete (TRC) and high-performance fiber-reinforced cement-based composites (HPFRCC). All these new materials exhibit pseudo-ductile behavior resulting from the formation of multiple, fine cracks when subject to tensile loading. The use of such types of fiber-reinforced concrete could revolutionize the planning, development, dimensioning, structural and architectural design, construction of new and strengthening and repair of existing buildings and structures in many areas of application. The SHCC4 Conference was the follow-up of three previous successful international events in Stellenbosch, South Africa in 2009, Rio de Janeiro, Brazil in 2011, and Dordrecht, The Netherlands in 2014.




Sustainable Materials and Smart Practices


Book Description

This book presents recent research on sustainable building materials and their various applications. Topics include such items as fiber reinforced concrete, the use of mineral admixtures. self-sensing cement composites, the use of nanomaterials for structural health monitoring and the production of geopolymer mortar. Keywords: Light Transmitting Concrete, Self-Compacting Concrete, Light-Weight Concrete, Polymer Concrete, Porous Concrete, Eco-Friendly Building Material, Cement Composite, Geopolymer Composites, Sustainable Bricks, Cement, Sisal Fiber, Glass Fiber, Nanomaterials, Metakaoline, Fly Ash, Silica Fume, Rice Husk Ash, Oyster Shells, Bitumen, Sugarcane Bagasse Ash, Herbocrete, Waste Foundry Sand, Swell Pressure of Clay, Quarry Dust, Sensors, Topology Optimization, Soil Stabilization.




Toughening Mechanisms in Composite Materials


Book Description

Toughening Mechanisms in Composite Materials aims to provide a comprehensive and technically detailed coverage of composites and their toughening mechanisms. Unique in its direct and comprehensive approach, the book presents fundamental knowledge on composites' toughening mechanisms as well as a comprehensive treatment of numerical methods. This volume summarizes the current state-of-the-art and presents the most recent research outcomes in the field. It details the development of each of the techniques, beginning with basic principles, and new concepts are illustrated with examples wherever possible. - Covers particle-reinforced composites, fibre-reinforced composites and other toughening mechanisms - Analyses toughening mechanisms in a broad range of composite materials - Developments in nanotube toughened composites and toughened graphene ceramic composites are examined




Fiber Reinforced Composites


Book Description

Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products. - Focuses on the different types of FRC's that are currently available (e.g. from polymeric matrices to metallic and ceramic matrices, from carbon fibre to different types of natural fibres and from short to long fibre reinforced), their processing techniques, characterization of different properties, and how to improve the interfacial adhesion between an incompatible fibre and matrix and their applications - Looks at crisis areas such as how to incorporate incompatible fibres and matrices together (e.g. Non-polar polypropylene matrix is not compatible with that of polar natural fibres and hence suitable surface modifications are required to make them compatible with each other) along with low cost processing methods, low density and high strength - Uncovers clarifications to both elementary and practical problems related to the fabrication of FRCs - Schematic representations depicting the interaction between different fibre types and matrices will be provided in some chapters




Advances in Lightweight Materials and Structures


Book Description

This book presents select proceedings of the International Conference on Advanced Lightweight Materials and Structures (ICALMS) 2020, and discusses the triad of processing, structure, and various properties of lightweight materials. It provides a well-balanced insight into materials science and mechanics of both synthetic and natural composites. The book includes topics such as nano composites for lightweight structures, impact and failure of structures, biomechanics and biomedical engineering, nanotechnology and micro-engineering, tool design and manufacture for producing lightweight components, joining techniques for lightweight structures for similar and dissimilar materials, design for manufacturing, reliability and safety, robotics, automation and control, fatigue and fracture mechanics, and friction stir welding in lightweight sandwich structures. The book also discusses latest research in composite materials and their applications in the field of aerospace, construction, wind energy, automotive, electronics and so on. Given the range of topics covered, this book can be a useful resource for beginners, researchers and professionals interested in the wide ranging applications of lightweight structures.




Latest Developments in Civil Engineering


Book Description

This book comprises select proceedings of the International Conference on Recent Advances in Civil Engineering (RACE 2022). The contents of this book focus on the recent advancements and innovations in the field of civil engineering and various related areas such as design and development of new sustainable and smart building materials, performance analysis and simulation of steel structures, design and performance optimization of concrete structures, structural engineering, geotechnical engineering, water resources engineering and hydraulics, transportation and bridge engineering, building services design, surveying and remote sensing, engineering management and renewable energy. This book serves as a useful reference to researchers and professionals in the field of civil engineering.




Brittle Matrix Composites 9


Book Description

The subjects of the symposia are on composite materials with matrices behaving as brittle in normal or special conditions. Brittle matrix composites are applied in various domains (civil engineering, mechanical equipment and machinery, vehicles, etc.) and in the last decades their importance is increasing together with their variety. Papers include: aggregate-binder composites (concretes, fibre concretes, rocks); sintered materials (ceramics); high strength composites with brittle matrices. In principle, the general problems of structures made of composite materials are not included in the papers. Various approaches to the material engineering problems are presented in the papers.




Recent Trends in Industrial and Production Engineering


Book Description

The book presents the select proceedings of the 3rd International Conference on Computational and Experimental Methods (ICCEMME 2021). It covers the broad topic of industrial and production engineering such as sustainable manufacturing systems, rapid prototyping, manufacturing process optimization, machining, and machine tools, casting, welding, forming, machining, machine tools, computer-aided engineering, manufacturing management, automation and metrology. This book will be useful for the researchers and professionals working in the in the field of industrial and production engineering.