Mechanochemistry in Nanoscience and Minerals Engineering


Book Description

Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.




Polymer Mechanochemistry


Book Description

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.




Extractive Metallurgy of Activated Minerals


Book Description

Mechanical activation of solids is a part of mechanochemistry, the science with a sound theoretical foundation exhibiting a wide range of potential application. Mechanical activation itself is an innovative procedure where an improvement in technological processes can be attained via a combination of new surface area and defects formation in minerals. Mechanical activation is of exceptional importance in extractive metallurgy and mineral processing and this area forms the topic of this book and is the result of more than twenty years of research and graduate teaching in the field. In pyrometallurgy, the mechanical activation of minerals makes it possible to reduce their decomposition temperatures or causes such a degree of disordering that the thermal activation may be omitted entirely. The potential mitigation of environmental pollutants is becoming increasingly important in this context. The lowering of reaction temperatures, the increase of the rate and amount of solubility, preparation of water soluble compounds, the necessity for simpler and less expensive reactors and shorter reaction times are some of the advantages of mechanical activation in hydrometallurgy. The environmental aspects of these processes are particularly attractive. Several industrial processes are examined and their flowsheets are presented as succesful of activation. In these processes, the introduction of a mechanical activation step into the technological cycle significantly modifies the subsequent steps. The book is designed for researchers, teachers, operators and students in the areas of extractive metallurgy, mineral processing, mineralogy, solid state chemistry and materials science.It will encourage newcomers to the mechanochemistry to do useful research and discover novel applications in this field.




Tribochemistry


Book Description

This volume provides a comprehensive introduction to the scientific and technical aspects of tribochemistry, a field concerned with the chemical reactions initiated by mechanical energy. The relevant theoretical background, recent innovations and results, and the possibilities of expanding industrial applications are covered.




Long-Term Durability of Polymeric Matrix Composites


Book Description

Long-Term Durability of Polymeric Matrix Composites presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.




Factories of the Future


Book Description

This book is open access under a CC BY 4.0 license.This book presents results relevant in the manufacturing research field, that are mainly aimed at closing the gap between the academic investigation and the industrial application, in collaboration with manufacturing companies. Several hardware and software prototypes represent the key outcome of the scientific contributions that can be grouped into five main areas, representing different perspectives of the factory domain:1) Evolutionary and reconfigurable factories to cope with dynamic production contexts characterized by evolving demand and technologies, products and processes.2) Factories for sustainable production, asking for energy efficiency, low environmental impact products and processes, new de-production logics, sustainable logistics.3) Factories for the People who need new kinds of interactions between production processes, machines, and human beings to offer a more comfortable and stimulating working environment.4) Factories for customized products that will be more and more tailored to the final user’s needs and sold at cost-effective prices.5) High performance factories to yield the due production while minimizing the inefficiencies caused by failures, management problems, maintenance.This books is primarily targeted to academic researchers and industrial practitioners in the manufacturing domain.