Empirical Asset Pricing


Book Description

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.




Inference for Heavy-Tailed Data


Book Description

Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques. Contains comprehensive coverage of new techniques of heavy tailed data analysis Provides examples of heavy tailed data and its uses Brings together, in a single place, a clear picture on learning and using these techniques







Non-Linear Time Series Models in Empirical Finance


Book Description

This 2000 volume reviews non-linear time series models, and their applications to financial markets.




Empirical Finance


Book Description

There is no denying the role of empirical research in finance and the remarkable progress of empirical techniques in this research field. This Special Issue focuses on the broad topic of “Empirical Finance” and includes novel empirical research associated with financial data. One example includes the application of novel empirical techniques, such as machine learning, data mining, wavelet transform, copula analysis, and TV-VAR, to financial data. The Special Issue includes contributions on empirical finance, such as algorithmic trading, market efficiency, market microstructure, portfolio theory and asset allocation, asset pricing models, liquidity risk premium, currency crisis, return predictability, and volatility modeling.




Fundamental Statistical Inference


Book Description

A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.




Applications of State Space Models in Finance


Book Description

State space models play a key role in the estimation of time-varying sensitivities in financial markets. The objective of this book is to analyze the relative merits of modern time series techniques, such as Markov regime switching and the Kalman filter, to model structural changes in the context of widely used concepts in finance. The presented material will be useful for financial economists and practitioners who are interested in taking time-variation in the relationship between financial assets and key economic factors explicitly into account. The empirical part illustrates the application of the various methods under consideration. As a distinctive feature, it includes a comprehensive analysis of the ability of time-varying coefficient models to estimate and predict the conditional nature of systematic risks for European industry portfolios.




Microeconometrics


Book Description

This book provides the most comprehensive treatment to date of microeconometrics, the analysis of individual-level data on the economic behavior of individuals or firms using regression methods for cross section and panel data. The book is oriented to the practitioner. A basic understanding of the linear regression model with matrix algebra is assumed. The text can be used for a microeconometrics course, typically a second-year economics PhD course; for data-oriented applied microeconometrics field courses; and as a reference work for graduate students and applied researchers who wish to fill in gaps in their toolkit. Distinguishing features of the book include emphasis on nonlinear models and robust inference, simulation-based estimation, and problems of complex survey data. The book makes frequent use of numerical examples based on generated data to illustrate the key models and methods. More substantially, it systematically integrates into the text empirical illustrations based on seven large and exceptionally rich data sets.




Stochastic Volatility in Financial Markets


Book Description

Stochastic Volatility in Financial Markets presents advanced topics in financial econometrics and theoretical finance, and is divided into three main parts. The first part aims at documenting an empirical regularity of financial price changes: the occurrence of sudden and persistent changes of financial markets volatility. This phenomenon, technically termed `stochastic volatility', or `conditional heteroskedasticity', has been well known for at least 20 years; in this part, further, useful theoretical properties of conditionally heteroskedastic models are uncovered. The second part goes beyond the statistical aspects of stochastic volatility models: it constructs and uses new fully articulated, theoretically-sounded financial asset pricing models that allow for the presence of conditional heteroskedasticity. The third part shows how the inclusion of the statistical aspects of stochastic volatility in a rigorous economic scheme can be faced from an empirical standpoint.