Industrial Materials


Book Description

Industrial Materials provides basic coverage of the five major types of industrial materialsmetals and their alloys, plastics, ceramics, wood and engineered wood products, and composites. The text first presents a general overview of material composition, molecular structure, and mechanicaland physical properties of materials. The five major types of industrial materials are then covered in a clear, easy-to-read format. The text concludes with an introduction to material standards. Destructive and nondestructive testing of materials are also presented in an overview format. This textis suitable for an advanced high school and introductory community college/university level materials technology curriculum.







Engineering Materials and Processes Desk Reference


Book Description

A one-stop desk reference, for engineers involved in the use of engineered materials across engineering and electronics, this book will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material ranges from basic to advanced topics, including materials and process selection and explanations of properties of metals, ceramics, plastics and composites. - A hard-working desk reference, providing all the essential material needed by engineers on a day-to-day basis - Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference sourcebook - Definitive content by the leading authors in the field, including Michael Ashby, Robert Messler, Rajiv Asthana and R.J. Crawford




Materials Enabled Designs


Book Description

There are books aplenty on materials selection criteria for engineering design. Most cover the physical and mechanical properties of specific materials, but few offer much in the way of total product design criteria. This innovative new text/reference will give the "Big picture view of how materials should be selected—not only for a desired function but also for their ultimate performance, durability, maintenance, replacement costs, and so on. Even such factors as how a material behaves when packaged, shipped, and stored will be taken into consideration. For without that knowledge, a design engineer is often in the dark as to how a particular material used in particular product or process is going to behave over time, how costly it will be, and, ultimately, how successful it will be at doing what is supposed to do. This book delivers that knowledge.* Brief but comprehensive review of major materials functional groups (mechanical, electrical, thermal, chemical) by major material categories (metals, polymers, ceramics, composites)* Invaluable guidance on selection criteria at early design stage, including such factors as functionality, durability, and availability* Insight into lifecycle factors that affect choice of materials beyond simple performance specs, including manufacturability, machinability, shelf life, packaging, and even shipping characteristics* Unique help on writing materials selection specifications




Materials Selection and Applications in Mechanical Engineering


Book Description

Unlike any other text of its kind, Materials Selection and Applications in Mechanical Engineering contains complete and in-depth coverage on materials of use, their principles, processing and handling details; along with illustrative examples and sample projects. It clearly depicts the needed topics and gives adequate coverage with ample examples so that ME students can appreciate the relevance of materials to their discipline. Featuring the basic principles of materials selection for application in various engineering outcomes, the contents of this text follow those of the common first-level introductory course in materials science and engineering. Directed toward mechanical engineering, it introduces the materials commonly used in this branch, along with an exhaustive description of their properties that decide their functional characteristics and selection for use, typical problems encountered during application due to improper processing or handling of materials, non-destructive test procedures used in maintenance to detect and correct problems, and much more. What's more, numerous examples and project-type analyses to select proper materials for application are provided. With the use of this unique text, teaching a relevant second-level course in materials to ME majors has never been easier Covers all aspects of engineering materials necessary for their successful utilization in mechanical components and systems. Defines a procedure to evaluate the materials' performance efficiency in engineering applications and illustrates it with a number of examples. Includes sample project activities, along with a number of assignments for self exercise. Keeps chapters short and targeted toward specific topics for easy assimilation. Contains several unique chapters, including microprocessing, MEMS, problems encountered during use of materials in mechanical components, and NDT procedures used to detect common defects such as cracks, porosity and gas pockets, internal residual stresses, etc. Features commonly used formulae in mechanical system components in an appendix. Several tables containing material properties are included throughout the book.




The Properties of Engineering Materials


Book Description

An introduction to materials science for engineering students at the undergraduate or advanced technical college level. This second edition includes expanded material on ceramics and composites, plus study questions. Covers crystals, mechanical properties, the deformation of materials, phase equilibrium, stress failure, methods of joining, and nond




Engineering Materials Technology


Book Description




Materials, Industrial, and Manufacturing Engineering Research Advances 2


Book Description

Selected, peer reviewed papers from the 2nd International Materials, Industrial, and Manufacturing Engineering Conference (MIMEC 2015), February 4-6, 2015, Bali, Indonesia




Laser Processing of Engineering Materials


Book Description

The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques