Industrial Wastewater Treatment, Recycling and Reuse


Book Description

Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions




Industrial Water Reuse and Wastewater Minimization


Book Description

Money-saving water strategies for industry.In the U.S. alone, process industries, petrochemicals, pulp and paper, metals and minerals, and many others ù will generate over 120 million tons of wastewater by the year 2000. Industrial Water Reuse and Wastewater Minimization, by James G. Mann and Y.A. Liu, describes water reuse and wastewater minimization principles and practices thatcan be used worldwide. Relatively easy to use and surprisingly inexpensive, the methods youÆll find in this important guide - particularly water-pinch technology ù are not only ecologically sound, but significantly lower manufacturing costs. Concepts are illustrated withabundant charts, tables, and real-life case studies.This resource includes a CD-ROM at no additional cost. Its Water/Target software generates freshwater use/wastewater generation targets, and suggests ways to reach them....lets you isolate bottlenecks limiting water reuse and find new reuse opportunities - all without the expense ofdetailed.




Wastewater Reuse and Watershed Management


Book Description

Water is a finite resource, and the demand for clean water is constantly growing. Clean freshwater is needed to meet irrigation demands for agriculture, for consumption, and for industrial uses. The world produces billions of tons of wastewater every year. This volume looks at a multitude of ways to capture, treat, and reuse wastewater and how to effectively manage watersheds. It presents a selection of new technologies and methods to recycle, reclaim, and reuse water for agricultural, industrial, and environmental purposes. The editor states that more than 75–80% of the wastewater we produce goes back to nature without being properly treated, leading to pollution and all sorts of negative health and productivity consequences. Topics cover a wide selection of research, including molluscs as a tool for river health assessment, flood risk modeling, biological removal of toxins from groundwater, saline water intrusion into coastal areas, urban drainage simulations, rainwater harvesting, irrigation topics, and more. Key features: • explores the existing methodologies in the field of reuse of wastewater • looks at different approaches in integrated water resources management • examines the issues of groundwater management and development • discusses saline water intrusion in coastal areas • presents various watershed management approaches • includes case studies and analyses of various water management efforts




Water Reuse


Book Description

An Integrated Approach to Managing the World's Water Resources Water Reuse: Issues, Technologies, and Applications equips water/wastewater students, engineers, scientists, and professionals with a definitive account of the latest water reclamation, recycling, and reuse theory and practice. This landmark textbook presents an integrated approach to all aspects of water reuse _ from public health protection to water quality criteria and regulations to advanced technology to implementation issues. Filled with over 500 detailed illustrations and photographs, Water Reuse: Issues, Technology, and Applications features: In-depth coverage of cutting-edge water reclamation and reuse applications Current issues and developments in public health and environmental protection criteria, regulations, and risk management Review of current advanced treatment technologies, new developments, and practices Special emphasis on process reliability and multiple barrier concepts approach Consideration of satellite and decentralized water reuse facilities Consideration of planning and public participation of water reuse Inside This Landmark Water/Wastewater Management Tool • Water Reuse: An Introduction • Health and Environmental Concerns in Water Reuse • Technologies and Systems for Water Reclamation and Reuse • Water Reuse Applications • Implementing Water Reuse




Water Reuse


Book Description

Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.




Wastewater Treatment and Reuse in the Food Industry


Book Description

This Brief is devoted to clean drinking water, which is (one of) the most important asset(s) in the food and beverage industry. In the present time of increasing water scarcity in many areas of the world, supply of clean water especially in the production and packaging chain of foods and beverages, is a crucial issue. This Brief hence outlines why functioning purification and reuse systems for wastewater are becoming more and more interesting and promising technologies in solving the challenge. Readers find in this Brief an introduction to different innovative treatment methodologies. The authors discuss key parameters (such as the water volume to be treated, types and chemical and physico-chemical characteristics of pollutants, but also the intended use of the recycled water) and present various methodologies, such as separation or concentration systems, centrifugation, evaporation, filtration, flotation, gravity separation, membrane techniques, aerobic and anaerobic biological treatments, as well as combined or hybrid systems. Selected specific methods are presented in detail, specifically a new adsorption method for the removal of metal ions.




Water Reuse


Book Description

Water Reuse: An International Survey of current practice, issues and needs examines water reuse practices around the world from different perspectives. The objective is to show how differently wastewater reuse is conceived and practised around the world as well as to present the varied needs and possibilities for reusing wastewater. In the first section water reuse practices around the world are described for regions having common water availability, reuse needs and social aspects. The second section refers to the “stakeholders” point of view. Each reuse purpose demands different water quality, not only to protect health and the environment but also to fulfil the requirements of the specific reuse. Reuses considered are agricultural, urban agriculture as a special case of the former, municipal and industrial. Alongside these uses, the indirect reuse for human consumption through aquifer recharge is also discussed. The third section deals with emerging and controversial topics. Ethical and economical dilemmas in the field are presented as a subject not frequently addressed in this field. The role of governments in respect of public policy in reuse is discussed as well as the different international criteria and standards for reusing wastewater. The importance of public acceptance and the way to properly handle it is also considered. The fourth section of the book presents contrasting case studies; typical situations in the developed world (Japan and Germany) are compared to those in developing countries (Pakistan and Brazil) for agricultural and industrial reuse. Indirect planned reuse for human consumption (Germany) is compared with an unplanned one (Mexico). The Windhoek, Namibia case study is presented to emphasize why if the direct reuse of wastewater for human consumption has been performed with success for more than 35 years it is still the only example of this type around the world. To illustrate the difficulties of having a common framework for regulating water reuse in several countries, the Mediterranean situation is described. Other case studies presented refer to the reuse situation in Israel, Spain, Cameroon, Nepal and Vietnam, these latter countries being located in water rich areas. This book will be an invaluable information source for all those concerned with water reuse including water utility managers, wastewater policy makers and water resources planners as well as researchers and students in environmental engineering, water resources planning and sanitary engineering. Scientific and Technical Report No. 20




Sustainable Use of Water by Industry


Book Description

Sustainable Use of Water by Industry: Perspectives, Incentives, and Tools




Integrated and Hybrid Process Technology for Water and Wastewater Treatment


Book Description

Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development Provides future direction of research in sustainable water and wastewater treatment




Industrial Wastewater Treatment by Activated Sludge


Book Description

Industrial pollution is still a major concern and despite its significance, sound and systematic pollution control efforts are very poorly documented. The character and treatability of industrial wastewaters is highly variable and specific for each industrial activity. Biological treatment with activated sludge is the appropriate technology for industrial wastewaters from several major industrial sectors. Industrial Wastewater Treatment by Activated Sludge deals with the activated sludge treatment of industrial wastewaters by considering conceptual frameworks, methodologies and case studies, in a stepwise manner. The issues related to activated sludge treatment, such as biodegradability based characterization, modeling, assessment of stoichiometric and kinetic parameters and design, as well as the issues of industrial pollution control, e.g. in-plant control, effect of pretreatment, etc. are combined in a way to provide a comprehensive and information-rich view to the reader. By doing so, the book supplies an up-to-date reference for industrial wastewater experts and both graduate and undergraduate students. Industrial Wastewater Treatment by Activated Sludge provides a roadmap, describing the methodologies for the treatment of industrial wastewaters from several major sectors, based on a solid theoretical background. Up to now although valuable separate efforts both on activated sludge and industrial wastewater treatment have been presented, an integrated approach that is crucial to practice has not been available. This gap is filled by this book.