ABC of SV


Book Description




Statistical Inference for Stochastic Volatility Models


Book Description

"Although stochastic volatility (SV) models have many appealing features, estimation and inference on SV models are challenging problems due to the inherent difficulty of evaluating the likelihood function. The existing methods are either computationally costly and/or inefficient. This thesis studies and contributes to the SV literature from the estimation, inference, and volatility forecasting viewpoints. It consists of three essays, which include both theoretical and empirical contributions. On the whole, the thesis develops easily applicable statistical methods for stochastic volatility models.The first essay proposes computationally simple moment-based estimators for the first-order SV model. In addition to confirming the enormous computational advantage of the proposed estimators, the results show that the proposed estimators match (or exceed) alternative estimators in terms of precision – including Bayesian estimators proposed in this context, which have the best performance among alternative estimators. Using this simple estimator, we study three crucial test problems (no persistence, no latent specification of volatility, and no stochastic volatility hypothesis), and evaluate these null hypotheses in three ways: asymptotic critical values, a parametric bootstrap procedure, and a maximized Monte Carlo procedure. The proposed methods are applied to daily observations on the returns for three major stock prices [Coca-Cola, Walmart, Ford], and the Standard and Poor’s Composite Price Index. The results show the presence of stochastic volatility with strong persistence.The second essay studies the problem of estimating higher-order stochastic volatility [SV(p)] models. The estimation of SV(p) models is even more challenging and rarely considered in the literature. We propose several estimators for higher-order stochastic volatility models. Among these, the simple winsorized ARMA-based estimator is uniformly superior in terms of bias and RMSE to other estimators, including the Bayesian MCMC estimator. The proposed estimators are applied to stock return data, and the usefulness of the proposed estimators is assessed in two ways. First, using daily returns on the S&P 500 index from 1928 to 2016, we find that higher-order SV models – in particular an SV(3) model – are preferable to an SV(1), from the viewpoints of model fit and both asymptotic and finite-sample tests. Second, using different volatility proxies (squared return and realized volatility), we find that higher-order SV models are preferable for out-of-sample volatility forecasting, whether a high volatility period (such as financial crisis) is included in the estimation sample or the forecasted sample. Our results highlight the usefulness of higher-order SV models for volatility forecasting.In the final essay, we introduce a novel class of generalized stochastic volatility (GSV) models which utilize high-frequency (HF) information (realized volatility (RV) measures). GSV models can accommodate nonstationary volatility process, various distributional assumptions, and exogenous regressors in the latent volatility equation. Instrumental variable methods are employed to provide a unified framework for the analysis (estimation and inference) of GSV models. We consider the parameter inference problem in GSV models with nonstationary volatility and develop identification-robust methods for joint hypotheses involving the volatility persistence parameter and the autocorrelation parameter of the composite error (or the noise ratio). For distributional theory, three different sets of assumptions are considered. In simulations, the proposed tests outperform the usual asymptotic test regarding size and exhibit excellent power. We apply our inference methods to IBM price and option data andidentify several empirical relationships"--




EGARCH and Stochastic Volatility


Book Description

"This paper proposes the EGARCH [Exponential Generalized Autoregressive Conditional Heteroskedasticity] model with jumps and heavy-tailed errors, and studies the empirical performance of different models including the stochastic volatility models with leverage, jumps and heavy-tailed errors for daily stock returns. In the framework of a Bayesian inference, the Markov chain Monte Carlo estimation methods for these models are illustrated with a simulation study. The model comparison based on the marginal likelihood estimation is provided with data on the U.S. stock index."--Author's abstract.




Stochastic Volatility and Jumps


Book Description

This paper analyzes exponentially affine and non-affine stochastic volatility models with jumps in returns and volatility. Markov Chain Monte Carlo (MCMC) technique is applied within a Bayesian inference to estimate model parameters and latent variables using daily returns from the Samp;P 500 stock index. There are two approaches to overcome the problem of misspecification of the square root stochastic volatility model. The first approach proposed by Christo ersen, Jacobs and Mimouni (2008) suggests to investigate some non-affine alternatives of the volatility process. The second approach consists in examining more heavily parametrized models by adding jumps to the return and possibly to the volatility process. The aim of this paper is to combine both model frameworks and to test whether the class of affine models is outperformed by the class of non-affine models if we include jumps into the stochastic processes. We conclude that the non-affine model structure have promising statistical properties and are worth further investigations. Further, we find affine models with jump components that perform similar to the non affine models without jump components. Since non affine models yield economically unrealistic parameter estimates, and research is rather developed for the affine model structures we have a tendency to prefer the affine jump diffusion models.




Parameter Estimation in Stochastic Volatility Models


Book Description

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.







Complex Systems in Finance and Econometrics


Book Description

Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.