The Molecular Epidemiology of Human Viruses


Book Description

Advances in DNA sequencing and phylogenetic inference have created powerful methods to investigate many dangerous human viruses. The Molecular Epidemiology Of Viruses provides a comprehensive introduction to the use of genetic methods in molecular epidemiology and in-depth examples of analyses from many viruses. This book is of interest to researchers in the fields of infectious disease, virology, microbiology, evolutionary biology, epidemiology and molecular biology as well as anyone interested in tracking the spread of disease.







Computational Molecular Evolution


Book Description

The field of molecular evolution has experienced explosive growth in recent years due to the rapid accumulation of genetic sequence data, continuous improvements to computer hardware and software, and the development of sophisticated analytical methods. The increasing availability of large genomic data sets requires powerful statistical methods to analyse and interpret them, generating both computational and conceptual challenges for the field. Computational Molecular Evolution provides an up-to-date and comprehensive coverage of modern statistical and computational methods used in molecular evolutionary analysis, such as maximum likelihood and Bayesian statistics. Yang describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes. The book emphasizes essential concepts rather than mathematical proofs. It includes detailed derivations and implementation details, as well as numerous illustrations, worked examples, and exercises. It will be of relevance and use to students and professional researchers (both empiricists and theoreticians) in the fields of molecular phylogenetics, evolutionary biology, population genetics, mathematics, statistics and computer science. Biologists who have used phylogenetic software programs to analyze their own data will find the book particularly rewarding, although it should appeal to anyone seeking an authoritative overview of this exciting area of computational biology.




Molecular Evolution


Book Description

The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.




The Phylogenetic Handbook


Book Description

A broad, hands on guide with detailed explanations of current methodology, relevant exercises and popular software tools.










Reconstructing Evolution


Book Description

Evolution is a complex process, acting at multiple scales, from DNA sequences and proteins to populations of species. Understanding and reconstructing evolution is of major importance in numerous subfields of biology. For example, phylogenetics and sequence evolution is central to comparative genomics, attempts to decipher genomes, and molecular epidemiology. Phylogenetics is also the focal point of large-scale international biodiversity assessment initiatives such as the 'Tree ofLife' project, which aims to build the evolutionary tree for all extant species.Since the pioneering work in phylogenetics in the 1960s, models have become increasingly sophisticated to account for the inherent complexity of evolution. They rely heavily on mathematics and aim at modelling and analyzing biological phenomena such as horizontal gene transfer, heterogeneity of mutation, and speciation and extinction processes. This book presents these recent models, their biological relevance, their mathematical basis, their properties, and the algorithms to infer them fromdata. A number of subfields from mathematics and computer science are involved: combinatorics, graph theory, stringology, probabilistic and Markov models, information theory, statistical inference, Monte Carlo methods, continuous and discrete algorithmics.This book arises from the Mathematics of Evolution & Phylogenetics meeting at the Mathematical Institute Henri Poincaré, Paris, in June 2005 and is based on the outstanding state-of-the-art reports presented by the conference speakers. Ten chapters - based around five themes - provide a detailed overview of key topics, from the underlying concepts to the latest results, some of which are at the forefront of current research.




Inferring Phylogenies


Book Description

Phylogenies, or evolutionary trees, are the basic structures necessary to think about and analyze differences between species. Statistical, computational, and algorithmic work in this field has been ongoing for four decades now, and there have been great advances in understanding. Yet no book has summarized this work. Inferring Phylogenies does just that in a single, compact volume. Phylogenies are inferred with various kinds of data. This book concentrates on some of the central ones: discretely coded characters, molecular sequences, gene frequencies, and quantitative traits. Also covered are restriction sites, RAPDs, and microsatellites.