Introduction to Analysis of the Infinite


Book Description

From the preface of the author: "...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."




Infinite Dimensional Analysis


Book Description

This text was born out of an advanced mathematical economics seminar at Caltech in 1989-90. We realized that the typical graduate student in mathematical economics has to be familiar with a vast amount of material that spans several traditional fields in mathematics. Much of the mate rial appears only in esoteric research monographs that are designed for specialists, not for the sort of generalist that our students need be. We hope that in a small way this text will make the material here accessible to a much broader audience. While our motivation is to present and orga nize the analytical foundations underlying modern economics and finance, this is a book of mathematics, not of economics. We mention applications to economics but present very few of them. They are there to convince economists that the material has so me relevance and to let mathematicians know that there are areas of application for these results. We feel that this text could be used for a course in analysis that would benefit math ematicians, engineers, and scientists. Most of the material we present is available elsewhere, but is scattered throughout a variety of sources and occasionally buried in obscurity. Some of our results are original (or more likely, independent rediscoveries). We have included some material that we cannot honestly say is neces sary to understand modern economic theory, but may yet prove useful in future research.




Functional Analysis and Infinite-Dimensional Geometry


Book Description

This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.




An Introduction to Infinite-Dimensional Analysis


Book Description

Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.




Introduction to Infinite Dimensional Stochastic Analysis


Book Description

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).




Infinite Analysis: Rims Project 1991 (In 2 Volumes)


Book Description

This is a collection of original research papers presented at the workshop. The main topics covered are Conformal Field Theory, Integrable Massive Field Theory, Quantum Gravity, Quantum Group, Lattice Solvable Models, Low Dimensional Topology, and C* Algebras.




New Trends In Quantum Integrable Systems - Proceedings Of The Infinite Analysis 09


Book Description

The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project “Method of Algebraic Analysis in Integrable Systems” in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years.Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics.Through these topics, the reader can learn about the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.




Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective


Book Description

This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM




Infinite Dimensional Stochastic Analysis


Book Description

This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate students and applied mathematicians. Sample Chapter(s). Complex White Noise and the Infinite Dimensional Unitary Group (425 KB). Contents: Complex White Noise and the Infinite Dimensional Unitary Group (T Hida); Complex It Formulas (M Redfern); White Noise Analysis: Background and a Recent Application (J Becnel & A N Sengupta); Probability Measures with Sub-Additive Principal SzegAOCoJacobi Parameters (A Stan); Donsker''s Functional Calculus and Related Questions (P-L Chow & J Potthoff); Stochastic Analysis of Tidal Dynamics Equation (U Manna et al.); Adapted Solutions to the Backward Stochastic NavierOCoStokes Equations in 3D (P Sundar & H Yin); Spaces of Test and Generalized Functions of Arcsine White Noise Formulas (A Barhoumi et al.); An Infinite Dimensional Fourier-Mehler Transform and the L(r)vy Laplacian (K Saito & K Sakabe); The Heat Operator in Infinite Dimensions (B C Hall); Quantum Stochastic Dilation of Symmetric Covariant Completely Positive Semigroups with Unbounded Generator (D Goswami & K B Sinha); White Noise Analysis in the Theory of Three-Manifold Quantum Invariants (A Hahn); A New Explicit Formula for the Solution of the BlackOCoMertonOCoScholes Equation (J A Goldstein et al.); Volatility Models of the Yield Curve (V Goodman). Readership: Graduate-level researchers in stochastic analysis, mathematical physics and financial mathematic




The Infinite Game


Book Description

From the New York Times bestselling author of Start With Why and Leaders Eat Last, a bold framework for leadership in today’s ever-changing world. How do we win a game that has no end? Finite games, like football or chess, have known players, fixed rules and a clear endpoint. The winners and losers are easily identified. Infinite games, games with no finish line, like business or politics, or life itself, have players who come and go. The rules of an infinite game are changeable while infinite games have no defined endpoint. There are no winners or losers—only ahead and behind. The question is, how do we play to succeed in the game we’re in? In this revelatory new book, Simon Sinek offers a framework for leading with an infinite mindset. On one hand, none of us can resist the fleeting thrills of a promotion earned or a tournament won, yet these rewards fade quickly. In pursuit of a Just Cause, we will commit to a vision of a future world so appealing that we will build it week after week, month after month, year after year. Although we do not know the exact form this world will take, working toward it gives our work and our life meaning. Leaders who embrace an infinite mindset build stronger, more innovative, more inspiring organizations. Ultimately, they are the ones who lead us into the future.