Infinite Dimensional Dynamical Systems and Their Finite Dimensional Analogues


Book Description

The speakers gave reports on their research to-date concerning nonlinear Partial Differential Equations and possible systems of Ordinary Differential Equations which faithfully capture their essential behavior, particularly in terms of chaotic behavior.







The Connection Between Infinite Dimensional and Finite Dimensional Dynamical Systems


Book Description

The last few years have seen a number of major developments demonstrating that the long-term behavior of solutions of a very large class of partial differential equations possesses a striking resemblance to the behavior of solutions of finite dimensional dynamical systems, or ordinary differential equations. The first of these advances was the discovery that a dissipative PDE has a compact, global attractor with finite Hausdorff and fractal dimensions. More recently, it was shown that some of these PDEs possess a finite dimensional inertial manifold-that is, an invariant manifold containing the attractor and exponentially attractive trajectories. With the improved understanding of the exact connection between finite dimensional dynamical systems and various classes of dissipative PDEs, it is now realistic to hope that the wealth of studies of such topics as bifurcations of finite vector fields and ``strange'' fractal attractors can be brought to bear on various mathematical models, including continuum flows. Surprisingly, a number of distributed systems from continuum mechanics have been found to exhibit the same nontrivial dynamic behavior as observed in low-dimensional dynamical systems. As a natural consequence of these observations, a new direction of research has arisen: detection and analysis of finite dimensional dynamical characteristics of infinite-dimensional systems. This book represents the proceedings of an AMS-IMS-SIAM Summer Research Conference, held in July, 1987 at the University of Colorado at Boulder. Bringing together mathematicians and physicists, the conference provided a forum for presentations on the latest developments in the field and fostered lively interactions on open questions and future directions. With contributions from some of the top experts, these proceedings will provide readers with an overview of this vital area of research.







From Finite to Infinite Dimensional Dynamical Systems


Book Description

Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995




Analysis of Infinite Dimensional Dynamical Systems by Set-oriented Numerics


Book Description

One central goal in the analysis of dynamical systems is the characterization of long term behavior of the system state. To this end, the so-called global attractor is of interest, that is, an invariant set that attracts all the trajectories of the underlying dynamical system. Over the last 20 years so-called set-oriented numerical methods have been developed that allow to compute approximations of invariant sets. The basic idea is to cover the objects of interest, for instance attractors or unstable manifolds, by outer approximations which are created via subdivision techniques. However, the applicability of those techniques is restricted to finite dimensional dynamical systems, i.e., ordinary differential equations or discrete dynamical systems. In this thesis, we extend the set-oriented numerical methods to the infinite dimensional context. With those extensions we will be able to compute finite dimensional invariant sets for infinite dimensional dynamical systems, e.g., for delay and partial differential equations. The idea is to utilize infinite dimensional embedding techniques in our numerical treatment. This will allow us to construct a finite dimensional dynamical system, the core dynamical system (CDS), on an appropriately chosen observation space. Using the CDS, we then can approximate finite dimensional embedded attractors or embedded unstable manifolds. Furthermore, we will be able to compute approximations of the embedded invariant measure in the observation space which gives a statistical description of the dynamical behavior of the infinite dimensional dynamical system. We present numerical realizations of the CDS for delay and partial differential equations and illustrate the efficiency of our approach in several examples. Furthermore, we present modifications for the set-oriented subdivision and continuation method. ... ; eng




Infinite-dimensional Dynamical Systems In Atmospheric And Oceanic Science


Book Description

The book provides some recent works in the study of some infinite-dimensional dynamical systems in atmospheric and oceanic science. It devotes itself to considering some infinite-dimensional dynamical systems in atmospheric and oceanic science, especially in geophysical fluid dynamics. The subject on geophysical fluid dynamics mainly tends to focus on the dynamics of large-scale phenomena in the atmosphere and the oceans. One of the important contents in the dynamics is to study the infinite-dimensional dynamical systems of the atmospheric and oceanic dynamics. The results in the study of some partial differential equations of geophysical fluid dynamics and their corresponding infinite-dimensional dynamical systems are also given.




Stabilization of Infinite Dimensional Systems


Book Description

This book deals with the stabilization issue of infinite dimensional dynamical systems both at the theoretical and applications levels. Systems theory is a branch of applied mathematics, which is interdisciplinary and develops activities in fundamental research which are at the frontier of mathematics, automation and engineering sciences. It is everywhere, innumerable and daily, and moreover is there something which is not system: it is present in medicine, commerce, economy, psychology, biological sciences, finance, architecture (construction of towers, bridges, etc.), weather forecast, robotics, automobile, aeronautics, localization systems and so on. These are the few fields of application that are useful and even essential to our society. It is a question of studying the behavior of systems and acting on their evolution. Among the most important notions in system theory, which has attracted the most attention, is stability. The existing literature on systems stability is quite important, but disparate, and the purpose of this book is to bring together in one document the essential results on the stability of infinite dimensional dynamical systems. In addition, as such systems evolve in time and space, explorations and research on their stability have been mainly focused on the whole domain in which the system evolved. The authors have strongly felt that, in this sense, important considerations are missing: those which consist in considering that the system of interest may be unstable on the whole domain, but stable in a certain region of the whole domain. This is the case in many applications ranging from engineering sciences to living science. For this reason, the authors have dedicated this book to extension of classical results on stability to the regional case. This book considers a very important issue, which is that it should be accessible to mathematicians and to graduate engineering with a minimal background in functional analysis. Moreover, for the majority of the students, this would be their only acquaintance with infinite dimensional system. Accordingly, it is organized by following increasing difficulty order. The two first chapters deal with stability and stabilization of infinite dimensional linear systems described by partial differential equations. The following chapters concern original and innovative aspects of stability and stabilization of certain classes of systems motivated by real applications, that is to say bilinear and semi-linear systems. The stability of these systems has been considered from a global and regional point of view. A particular aspect concerning the stability of the gradient has also been considered for various classes of systems. This book is aimed at students of doctoral and master’s degrees, engineering students and researchers interested in the stability of infinite dimensional dynamical systems, in various aspects.