Arthropod Brains


Book Description

In The Descent of Man, Charles Darwin proposed that an ant’s brain, no larger than a pin’s head, must be sophisticated to accomplish all that it does. Yet today many people still find it surprising that insects and other arthropods show behaviors that are much more complex than innate reflexes. They are products of versatile brains which, in a sense, think. Fascinating in their own right, arthropods provide fundamental insights into how brains process and organize sensory information to produce learning, strategizing, cooperation, and sociality. Nicholas Strausfeld elucidates the evolution of this knowledge, beginning with nineteenth-century debates about how similar arthropod brains were to vertebrate brains. This exchange, he shows, had a profound and far-reaching impact on attitudes toward evolution and animal origins. Many renowned scientists, including Sigmund Freud, cut their professional teeth studying arthropod nervous systems. The greatest neuroanatomist of them all, Santiago Ramón y Cajal—founder of the neuron doctrine—was awed by similarities between insect and mammalian brains. Writing in a style that will appeal to a broad readership, Strausfeld weaves anatomical observations with evidence from molecular biology, neuroethology, cladistics, and the fossil record to explore the neurobiology of the largest phylum on earth—and one that is crucial to the well-being of our planet. Highly informative and richly illustrated, Arthropod Brains offers an original synthesis drawing on many fields, and a comprehensive reference that will serve biologists for years to come.







The Discovery of a Visual System


Book Description

This book is the only account of what honeybees actually see. Bees detect some visual features such as edges and colours, but there is no sign that they reconstruct patterns or put together features to form objects. Bees detect motion but have no perception of what it is that moves, and certainly they do not recognize "things" by their shapes. Yet they clearly see well enough to fly and find food with a minute brain. Bee vision is therefore relevant to the construction of simple artificial visual systems, for example for mobile robots. The surprising conclusion is that bee vision is adapted to the recognition of places, not things. In this volume, Adrian Horridge also sets out the curious and contentious history of how bee vision came to be understood, with an account of a century of neglect of old experimental results, errors of interpretation, sharp disagreements, and failures of the scientific method. The design of the experiments and the methods of making inferences from observations are also critically examined, with the conclusion that scientists are often hesitant, imperfect and misleading, ignore the work of others, and fail to consider alternative explanations. The erratic path to understanding makes interesting reading for anyone with an interest in the workings of science but particularly those researching insect vision and invertebrate sensory systems.




Orientation and Communication in Arthropods


Book Description

The present volume deals with the most fascinating aspects of sensory performance studied in insects, crustaceans and spiders. Arthropods inhabit practically every conceivable ecological niche, and are perfectly adapted to cope with the constraints of their natural habitats. They move on the ground, in water, and in the air. They use visual, olfactory, acoustical, vibratory, and tactile cues for orientation, to recognize and pinpoint their target, their home place, a feeding site, a prey, or a potential mate. Many arthropods use celestial (skylight) and terrestrial (magnetic) compass cues for orientation, and some of them were shown to develop, through experience, oriented behaviours based on a variety of innate, hard-wired orientation mechanisms. In many cases, aspects of behaviour that are involved in orientation cannot be separated from inter- and intraspecific communication. The book brings to the fore the role of communication not only in social and sexual behaviours, but also in the context of oriented locomotion. Top, internationally renowned scientists have contributed to this volume and have succeeded in presenting a book full of highlights which will be of great interest to workers in this field of research. With contributions by F. G. Barth; D. von Helverson, K.-E. Kaissling, W. Kirchner, M. Walker, M. Weissburg, R. Campan, T. Collett, J. Zeil, K. Kirschfeld, R. Wehner, M. Srinivasan, M. Lehrer, R. Gadagkar.




Perceptual Coding


Book Description

Handbook of Perception, Volume VIII: Perceptual Coding covers perceptual coding of space, time, and objects, including sensory memory systems and the relations between verbal and perceptual codes. This volume contains contributions that focus on such subjects as the compound eye; the problems of the perceptual constancies and of intersensory coordination in perceptual development; the visual perception of objects in space; and perception of motion. Topics on the perception of color, the representation of temporal, auditory, and haptic perception; and the relationship between verbal and perceptual codes are discussed in detail as well. This book will be of use to psychologists, biologists, and those interested in the study of perceptual codes.




Visual Ecology


Book Description

A comprehensive treatment of visual ecology Visual ecology is the study of how animals use visual systems to meet their ecological needs, how these systems have evolved, and how they are specialized for particular visual tasks. Visual Ecology provides the first up-to-date synthesis of the field to appear in more than three decades. Featuring some 225 illustrations, including more than 140 in color, spread throughout the text, this comprehensive and accessible book begins by discussing the basic properties of light and the optical environment. It then looks at how photoreceptors intercept light and convert it to usable biological signals, how the pigments and cells of vision vary among animals, and how the properties of these components affect a given receptor's sensitivity to light. The book goes on to examine how eyes and photoreceptors become specialized for an array of visual tasks, such as navigation, evading prey, mate choice, and communication. A timely and much-needed resource for students and researchers alike, Visual Ecology also includes a glossary and a wealth of examples drawn from the full diversity of visual systems. The most up-to-date overview of visual ecology available Features some 225 illustrations, including more than 140 in color, spread throughout the text Guides readers from the basic physics of light to the role of visual systems in animal behavior Includes a glossary and a wealth of real-world examples




Photoreceptor Optics


Book Description

The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the "universal" photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the "universal" photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.




Photoreception and Vision in Invertebrates


Book Description

I see a man's life is a tedious one. Cymbeline, Act III, Sc. 6. It is well known that the best way to learn a subject is to teach it! Along the same lines one might also say that a pleasant way of learning a subject and at the same time getting to know quite a few of the workers active in it, is to arrange and to attend an Advanced Study Institute (ASI) or a workshop lasting about two weeks. This was and is the wisdom behind the NA TO-ASI programme and much as people fear that a fortnight may be too long, before it is over everyone feels that it was too short, especially if the weather had cooperated. Organising this ASI which resulted in this volume has been a very good learning experience. I started my career in research with invertebrates and retained an interest in them over the years due to my teaching a course and working sporadically on various aspects of photoreception in Polychaetes, Crustaceans and Insects. Thus, the thought of organising an ASI on photoreception and vision in invertebrates had been brewing in my mind for the past half a dozen years or so. It was felt that it will be desirable to do a bit of stock taking and discuss possible new approaches to the study of this matter.




Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks


Book Description

This text brings to vision research a treatment different from that often found in books on the subject in its emphasis on nonlinear aspects of vision, from human perception to eye cells of the fly. There is considerable emphasis on mathematics, which forms not only models but the algorithms for processing data.




Research Awards Index


Book Description