Information-Theoretic Aspects of Neural Networks


Book Description

Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.




An Information-Theoretic Approach to Neural Computing


Book Description

A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.




Information Theoretic Learning


Book Description

This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.




The Principles of Deep Learning Theory


Book Description

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.




Information Theory, Inference and Learning Algorithms


Book Description

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.




Textbook Of Bioinformatics, A: Information-theoretic Perspectives Of Bioengineering And Biological Complexes


Book Description

This book on bioinformatics is designed as an introduction to the conventional details of genomics and proteomics as well as a practical comprehension text with an extended scope on the state-of-the-art bioinformatic details pertinent to next-generation sequencing, translational/clinical bioinformatics and vaccine-design related viral informatics.It includes four major sections: (i) An introduction to bioinformatics with a focus on the fundamentals of information-theory applied to biology/microbiology, with notes on bioinformatic resources, data bases, information networking and tools; (ii) a collection of annotations on the analytics of biomolecular sequences, with pertinent details presented on biomolecular informatics, pairwise and multiple sequences, viral sequence informatics, next-generation sequencing and translational/clinical bioinformatics; (iii) a novel section on cytogenetic and organelle bioinformatics explaining the entropy-theoretics of cellular structures and the underlying informatics of synteny correlations; and (iv) a comprehensive presentation on phylogeny and species informatics.The book is aimed at students, faculty and researchers in biology, health/medical sciences, veterinary/agricultural sciences, bioengineering, biotechnology and genetic engineering. It will be a useful companion for managerial personnel in the biotechnology and bioengineering industries as well as in health/medical science.




Neural Networks Theory


Book Description

This book, written by a leader in neural network theory in Russia, uses mathematical methods in combination with complexity theory, nonlinear dynamics and optimization. It details more than 40 years of Soviet and Russian neural network research and presents a systematized methodology of neural networks synthesis. The theory is expansive: covering not just traditional topics such as network architecture but also neural continua in function spaces as well.




Neural Network Learning


Book Description

This work explores probabilistic models of supervised learning problems and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, the authors develop a model of classification by real-output networks, and demonstrate the usefulness of classification...




Pattern Recognition and Neural Networks


Book Description

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.




The Handbook of Brain Theory and Neural Networks


Book Description

This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).