Infrared and Millimeter Waves V8


Book Description

Infrared and Millimeter Waves, Volume 8: Electromagnetic Waves in Matter, Part I compiles the work of several authors while focusing on certain aspects of infrared and millimeter waves, such as sources of radiation, instrumentation, and millimeter systems. This volume discusses electromagnetic waves in matter. The first chapter covers the properties of the dielectric materials, which is then followed by a discussion of far-infrared spectroscopy on high polymers. Chapter 3 tackles submillimeter solid-state physics, and Chapter 4 reviews the theory of infrared and far-infrared free-carrier behavior in semiconductors. The improvements in pyroelectric detectors are then reviewed. The sixth chapter discusses cyclotron and Zeeman transitions in photoexcited semiconductors at far infrared, while the seventh chapter discusses high temperature infrared reflectivity spectroscopy. Chapter 8 covers millimeter and submillimeter waves' interaction with giant atoms. The last chapter is about spectroscopy of InAs-GaSb layered structures. This book will be of great use to researchers or professionals whose work involves infrared and millimeter waves.




Superconducting Technology


Book Description

This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.




Superconducting Devices


Book Description

Superconducting Devices presents the theory, qualification, and fabrication of superconducting device elements and integrated circuitry. This book discusses the various uses of superconducting devices in many areas where their sensitivity, speed, or other characteristics stemming from the unique nature of superconductivity make them the device of choice. Organized into 10 chapters, this book begins with an overview of superconducting quantum interference devices (SQUIDs), which is the main achievement of superconductor electronics. This text then examines the status of dc and rf SQUIDs. Other chapters consider the progress in the fabrication technology for high-quality junctions and it integration technology, which are developed mainly for digital applications. This book discusses as well the increasing need for compact submillimeter sources for use in such applications as satellite communications and receivers for astronomical observation. The final chapter deals with the thin film tunneling experiments. This book is a valuable resource for physicists, chemists, materials scientists, and electrical engineers.




Advances in Magnetic and Optical Resonance


Book Description

Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.




Magnetic, Ferroelectric, and Multiferroic Metal Oxides


Book Description

Magnetic, Ferroelectric, and Multiferroic Metal Oxides covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties, and important technological applications, serving as the most comprehensive, up-to-date reference on the subject. Organized in four parts, Dr. Biljana Stojanovic leads expert contributors in providing the context to understand the material (Part I: Introduction), the theoretical and practical aspects of ferroelectrics (Part II: Ferroelectrics: From Theory, Structure and Preparation to Application), magnetic metal oxides (Part III: Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics), multiferroics (Part IV: Multiferroic Metal Oxides) and future directions in research and application (Part V: Future of Metal Oxide Ferroics and Multiferroics). As ferroelectric materials are used to make capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects, this book will provide an ideal source for the most updated information. - Addresses ferroelectrics, ferromagnetics and multiferroelectrics, providing a one-stop reference for researchers - Provides fundamental theory and relevant, important technological applications - Highlights their use in capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects




Handbook of Lasers


Book Description

Lasers continue to be an amazingly robust field of activity. Anyone seeking a photon source is now confronted with an enormous number of possible lasers and laser wavelengths to choose from, but no single, comprehensive source to help them make that choice. The Handbook of Lasers provides an authoritative compilation of lasers, their properties, and original references in a readily accessible form. Organized by lasing media-solids, liquids, and gases-each section is subdivided into distinct laser types. Each type carries a brief description, followed by tables listing the lasing element or medium, host, lasing transition and wavelength, operating properties, primary literature citations, and, for broadband lasers, reported tuning ranges. The importance and value of the Handbook of Lasers cannot be overstated. Serving as both an archive and as an indicator of emerging trends, it reflects the state of knowledge and development in the field, provides a rapid means of obtaining reference data, and offers a pathway to the literature. It contains data useful for comparison with predictions and for developing models of processes, and may reveal fundamental inconsistencies or conflicts in the data.










Handbook of Laser Wavelengths


Book Description

This volume represents the most complete, up-to-date compilation of wavelengths of lasers in all media. Divided by type - solid, liquid, and gas - and listed in order of increasing wavelength, Handbook of Laser Wavelengths includes: crystalline paramagnetic ion lasers glass lasers color center lasers semiconductor lasers polymer lasers liquid and solid-state dye lasers rare earth liquid lasers neutral atom, ion, and molecular gas lasers extreme ultraviolet and soft X-ray lasers free electron lasers nuclear-pumped lasers lasers in nature lasers without inversion Brief descriptions of each type of laser are presented, followed by tables listing the laser wavelength, lasing element or medium, host, transition, and primary literature citations. A special section on commercial lasers is an added featured. Handbook of Laser Wavelengths singularly serves as the essential reference for scientists and engineers searching for laser sources for specific applications as well as a survey of the developments that have occurred since the advent of the laser.




Analyzing the Physics of Radio Telescopes and Radio Astronomy


Book Description

In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.