High Resolution Infrared Spectroscopy in Astronomy


Book Description

Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomical observations are lagging a bit behind in this field. The papers are an interesting mix of reports from existing high resolution facilities, reports on modeling efforts of synthetic spectra and reports on laboratory spectra. In this sense, a fruitful exchange between molecular physics and astronomy was again accomplished and is documented in this volume.







Infrared Spectroscopy for Food Quality Analysis and Control


Book Description

Written by an international panel of professional and academic peers, the book provides the engineer and technologist working in research, development and operations in the food industry with critical and readily accessible information on the art and science of infrared spectroscopy technology. The book should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.Infrared (IR) Spectroscopy deals with the infrared part of the electromagnetic spectrum. It measure the absorption of different IR frequencies by a sample positioned in the path of an IR beam. Currently, infrared spectroscopy is one of the most common spectroscopic techniques used in the food industry. With the rapid development in infrared spectroscopic instrumentation software and hardware, the application of this technique has expanded into many areas of food research. It has become a powerful, fast, and non-destructive tool for food quality analysis and control.Infrared Spectroscopy for Food Quality Analysis and Control reflects this rapid technology development. The book is divided into two parts. Part I addresses principles and instruments, including theory, data treatment techniques, and infrared spectroscopy instruments. Part II covers the application of IRS in quality analysis and control for various foods including meat and meat products, fish and related products, and others. - Explores this rapidly developing, powerful and fast non-destructive tool for food quality analysis and control - Presented in two Parts -- Principles and Instruments, including theory, data treatment techniques, and instruments, and Application in Quality Analysis and Control for various foods making it valuable for understanding and application - Fills a need for a comprehensive resource on this area that includes coverage of NIR and MVA




Introduction to Astronomical Spectroscopy


Book Description

Thoroughly illustrated and clearly written, this handbook offers graduate students and active researchers a practical guide to astronomical spectroscopy.




Concepts and Methods of 2D Infrared Spectroscopy


Book Description

2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method. This unique book introduces the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate involved concepts. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.







Infrared and Raman Spectroscopy


Book Description

Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, Second Edition provides a solid introduction to vibrational spectroscopy with an emphasis on developing critical interpretation skills. This book fully integrates the use of both IR and Raman spectroscopy as spectral interpretation tools, enabling the user to utilize the strength of both techniques while also recognizing their weaknesses. This second edition more than doubles the amount of interpreted IR and Raman spectra standards and spectral unknowns. The chapter on characteristic group frequencies is expanded to include increased discussions of sulphur and phosphorus organics, aromatic and heteroaromatics as well as inorganic compounds. New topics include a discussion of crystal lattice vibrations (low frequency/THz), confocal Raman microscopy, spatial resolution in IR and Raman microscopy, as well as criteria for selecting Raman excitation wavelengths. These additions accommodate the growing use of vibrational spectroscopy for process analytical monitoring, nanomaterial investigations, and structural and identity determinations to an increasing user base in both industry and academia. - Integrates discussion of IR and Raman spectra - Pairs generalized IR and Raman spectra of functional groups with tables and text - Includes over 150 fully interpreted, high quality IR and Raman reference spectra - Contains fifty-four unknown IR and Raman spectra, with a corresponding answer key




Optical Astronomical Spectroscopy


Book Description

A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.




Infrared Spectroscopy of Symmetric and Spherical Top Molecules for Space Observation, Volume 2


Book Description

This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile probes or nanosatellites. The theoretical models described in Volumes 1, 2 and 3 are used in this volume, applying the cumulant theorem in the mean-field theory framework to interpret the near and mid-infrared spectra of symmetric top molecules, such as ammonia (NH3) and spherical molecules, such as methane (CH4). These molecules can be isolated in their gaseous form or subjected to the environmental constraints of a nano-cage (a substitution site, clathrate, fullerene or zeolite) or surfaces. These methods are not only valuable in the fields of environmental sciences, planetology and astrophysics, but also fit into the framework of data processing and the concept of Big Data.




Spectroscopic Instrumentation


Book Description

In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments. This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive stars and spectropolarimetry as an extension of spectroscopy. The book offers a comprehensive introduction to spectroscopy for students of physics and astronomy, as well as a valuable resource for amateur astronomers interested in learning the principles of spectroscopy and spectrograph design.