Initiation, Growth, and Coalescence of Small Fatigue Cracks


Book Description

This interim report summarizes the second year's progress on a research effort directed at studying the initiation, growth, and coalescence of small fatigue cracks at notches. A fracture mechanics based model is described to predict the growth and coalescence of multiple cracks located at notches. The predictive model is compared with experimental results obtained with multiple cracked specimens made from a transparent polymer and for metal specimens. Current efforts and future goals are also briefly described. (Author).




Fatigue Damage, Crack Growth and Life Prediction


Book Description

Fatigue failure is a multi-stage process. It begins with the initiation of cracks, and with continued cyclic loading the cracks propagate, finally leading to the rupture of a component or specimen. The demarcation between the above stages is not well-defined. Depending upon the scale of interest, the variation may span three orders of magnitude. For example, to a material scientist an initiated crack may be of the order of a micron, whereas for an engineer it can be of the order of a millimetre. It is not surprising therefore to see that investigation of the fatigue process has followed different paths depending upon the scale of phenomenon under investigation. Interest in the study of fatigue failure increased with the advent of industrial ization. Because of the urgent need to design against fatigue failure, early investiga tors focused on prototype testing and proposed failure criteria similar to design formulae. Thus, a methodology developed whereby the fatigue theories were proposed based on experimental observations, albeit at times with limited scope. This type of phenomenological approach progressed rapidly during the past four decades as closed-loop testing machines became available.







Fatigue Crack Growth


Book Description

This book offers a concise introduction to fatigue crack growth, based on practical examples. It discusses the essential concepts of fracture mechanics, fatigue crack growth under constant and variable amplitude loading and the determination of the fracture-mechanical material parameters. The book also introduces the analytical and numerical simulation of fatigue crack growth as well as crack initiation. It concludes with a detailed description of several practical case studies and some exercises. The target group includes graduate students, researchers at universities and practicing engineers.




Surface-crack Growth


Book Description

From the symposium (on title) held in Sparks, Nevada, April 1988. Twenty-two peer-reviewed papers are divided into sections on models and experiments (monotonic loading), and fatigue crack growth. Areas addressed include the differences in constraint for 2-D through-thickness cracks and 3-D surface







Fatigue Mechanisms


Book Description