Flow and Rheology in Polymer Composites Manufacturing


Book Description

Deals with the mechanics and modelling aspects of discontinuous and continuous fibre composites, and familiarizes engineers with the critical and fundamental issues of material processing and transport phenomena in polymeric composites and their applications in modelling.




Science and Engineering of Short Fibre-Reinforced Polymer Composites


Book Description

Science and Engineering of Short Fibre Reinforced Polymer Composites, Second Edition, provides the latest information on the 'short fiber reinforced composites' (SFRP) that have found extensive applications in automobiles, business machines, durable consumer items, sporting goods and electrical industries due to their low cost, easy processing and superior mechanical properties over parent polymers. This updated edition presents new developments in this field of research and includes new chapters on electrical conductivity, structural monitoring, functional properties, self-healing, finite element method techniques, multi-scale SFRCs, and both modern computational and process engineering methods. - Reviews the mechanical properties and functions of short fiber reinforced polymer composites (SFRP) - Examines recent developments in the fundamental mechanisms of SFRP's - Assesses major factors affecting mechanical performance, such as stress transfer and strength - Includes new chapters on electrical conductivity, structural monitoring, functional properties, self-healing, finite element method techniques, multi-scale SFRCs, modern computational methods, and process engineering methods




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.




Flow-Induced Alignment in Composite Materials


Book Description

The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. The first edition of this book detailed, in a single volume, the science, processing, applications, characterization and properties of composite materials reinforced with short fibers that have been orientated in a preferred direction by flows arising during processing. The technology of fiber-reinforced composites is continually evolving and this new edition provides timely and much needed information about this important class of engineering materials. Each of the original chapters have been brought fully up-to-date and new developments such as: the advent of nano-composites and the issues relating to their alignment; the wider use of long-fiber composites and the appearance of models able to capture their orientation during flow; the wider use of flows in micro-channels in the context of composites fabrication; and the increase in computing power, which has made relevant simulations (especially coupling flow kinematics to fiber content and orientation) much easier to perform are all covered in detail. The book will be an essential up-to-date reference resource for materials scientists, students, and engineers who are working in the relevant areas of particulate composites, short fiber-reinforced composites or nanocomposites. - Presents recent progress on flow-induced alignment, modelling and design of fiber and particulate filled polymer composites - Discusses important advances such as alignment of CNTs in polymer nanocomposites and molecular alignment of polymers induced by the injection molding process in the presence of fillers such as short fibers - Presents fiber interaction/diffusion modelling and also the fiber flexure/breakage models




Polypropylene Handbook


Book Description

This book extensively reviews Polypropylene (PP), the second most widely produced thermoplastic material, having been produced for over 60 years. Its synthesis, processing and application are still accompanied by vigorous R&D developments because the properties of PP are at the borderline between those of commodity and engineering thermoplastics. Readers are introduced to various tacticities and polymorphs of PP, and their effects on structural properties. Further, the book addresses the control of optical properties using nucleants, provides strategies for overcoming the limited cold/impact resistance of PP, examines in detail the effects of recycling, and presents guidelines for the property modification of PPs through foaming, filling and reinforcing with respect to target applications. Special attention is paid to descriptions and models of properties as a function of morphological variables. Last but not least, the book suggests potential practical applications of PP-based systems, especially in the packaging, appliances, building/construction, textile and automotive sectors. Each chapter, written by internationally respected scientists, reflects the current state-of-art in the respective field and offers a vital source of information for students, researchers and engineers interested in the morphology, properties, testing and modeling of PP and PP-based systems. The content is indispensable to the appropriate application of PPs and related composites.




Polypropylene


Book Description

My heart sank when I was approached by Dr Hastings and by Professor Briggs (Senior Editor of Materials Science and Technology and Series Editor of Polymer Science and Technology Series at Chapman & Hall, respectively) to edit a book with the provisional title Handbook of Poly propylene. My reluctance was due to the fact that my former book [1] along with that of Moore [2], issued in the meantime, seemed to cover the information demand on polypropylene and related systems. Encour aged, however, by some colleagues (the new generation of scientists and engineers needs a good reference book with easy information retrieval, and the development with metallocene catalysts deserves a new update!), I started on this venture. Having some experience with polypropylene systems and being aware of the current literature, it was easy to settle the titles for the book chapters and also to select and approach the most suitable potential contributors. Fortunately, many of my first-choice authors accepted the invitation to contribute. Like all editors of multi-author volumes, I recognize that obtaining contributors follows an S-type curve of asymptotic saturation when the number of willing contributors is plotted as a function of time. The saturation point is, however, never reached and as a consequence, Dear Reader, you will also find some topics of some relevance which are not explicitly treated in this book (but, believe me, I have considered them).




Process Modeling in Composites Manufacturing


Book Description

There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Edition provides tangible m




Fiber-dependent injection molding simulation of discontinuous reinforced polymers


Book Description

This work presents novel simulation techniques for injection molding of fiber reinforced polymers. These include approaches for anisotropic flow modeling, hydrodynamic forces from fluid on fibers, contact forces between fibers, a novel fiber breakage modeling approach and anisotropic warpage analysis. Due to the coupling of fiber breakage and anisotropic flow modeling, the fiber breakage directly influences the modeled cavity pressure, which is validated with experimental data.




Mesoscale simulation of the mold filling process of Sheet Molding Compound


Book Description

Sheet Molding Compounds (SMC) are discontinuous fiber reinforced composites that are widely applied due to their ability to realize composite parts with long fibers at low cost. A novel Direct Bundle Simulation (DBS) method is proposed in this work to enable a direct simulation at component scale utilizing the observation that fiber bundles often remain in a bundled configuration during SMC compression molding.




Heat Transfer in Polymer Composite Materials


Book Description

This book addresses general information, good practices and examples about thermo-physical properties, thermo-kinetic and thermo-mechanical couplings, instrumentation in thermal science, thermal optimization and infrared radiation.