Innovation in Zeolite Materials Science


Book Description

The proceedings of this zeolite scientific meeting reflect the growing drive to discover new materials. It is evident that zeolite materials science is in a post-ZSM-5 period - pushed by a massive expansion of new compositions and topologies, and the application of new scientific tools. Four new zeolite topologies were detailed at this meeting. Important new trends were the resurgence of interest in computational and theoretical approaches to explain synthesis, sorption and catalytic data, and the increasing use of NMR and high-resolution imaging.










Introduction to Zeolite Molecular Sieves


Book Description

Introduction to Zeolite Molecular Sieves, 3rd Edition presents a collection of the most important results and ideas in the field of molecular sieve chemistry and technology, the most important experimental techniques related to the research activities in molecular sieves, and identifies new areas of molecular sieve chemistry. Chapters start at a reasonably simple entry level, but also covers the present state-of-the-art in the field. Topics covered include structure, synthesis, characterization, ion exchange, adsorption, diffusion, separations, and natural zeolites. * 6 years since the last edtion this book brings together the rapid development within the field of molecular sieve chemistry and applications * Accessible to newcomers to the field, also containing valuable information for experienced researchers * 27 chapters written by renowned scientists in their field, including updates on some 2nd edition chapters




Chemistry of Microporous Crystals


Book Description

This volume is a collection of 14 plenary lectures and 25 invited and contributed papers which were presented at the International Symposium on Chemistry of Microporous Crystals (CMPC) held at Sophia University in Tokyo, Japan. The symposium was organized by the Japan Association of Zeolite in collaboration with twelve major academic Japanese societies dealing with the chemistry of microporous crystals. The symposium was attended by over 250 researchers from 13 countries. The objective of the symposium was to present new horizons and developments in the chemistry and application of natural and synthetic crystalline materials having microporous structures. At this meeting the following trends were noted: new possibilities for highly selective oxidation of hydrocarbon and synthesis of fine chemicals using modified zeolites and metallosilicates; sophisticated syntheses of some valuable hydrocarbons such as 2,6-dimethylnaphthalene and styrene which could not be obtained successfully by conventional catalysts; detailed mechanism of decomposition and aromatization of paraffinic hydrocarbons on zeolitic catalysts; methanol conversion on zeolite catalysts; syntheses of novel wide pore aluminophosphates and their isomorphously substituted porous crystals; detailed analysis of the state of cations in zeolites and metallosilicates; application to direct decomposition of nitric oxide; dynamic behavior of molecules in zeolite pores; chemistry and reaction performance of clay minerals. This proceedings volume contains thorough reviews and original contributions, each of which includes an extensive list of references. The result is a comprehensive overview of the chemistry of zeolite and zeolite-like crystalline materials and clay minerals, including pillared clays.




Scientific Bases for the Preparation of Heterogeneous Catalysts


Book Description

This volume of Studies in Surface Science and Catalysis contains the Proceedings of the 9th International Symposium on the Scientific Bases for the Preparation of Heterogeneous Catalysts, held on the campus of the "Universit catholique de Louvain" (UCL) in Louvain-la-Neuve, Belgium, on September 10-14, 2006. This series of symposia was initiated in 1975 on a regular 4-year interval basis. The Symposium covered the following topics: key aspects in catalysts preparation, micro- and mesoporous supports, supported metal catalysts, structured catalysts, tailored zeolites, catalysis by bases, and catalysts for fuel production. These topics served as guidelines for the sessions both in the programs of oral communications (41 contributions including 7 keynote communications – one for each topic) and poster presentations (101 contributions). In addition, the opening invited lecture addressed the question of scaling-up high-throughput experimental approaches. * Contains a collection of the papers presented at the workshop




New Frontiers in Catalysis, Parts A-C


Book Description

These volumes comprise the proceedings of the major international meeting on catalysis which is held at 4 year intervals. The programme focussed on New Frontiers in Catalysis including nontraditional catalytic materials and environmental catalysis. The contributions cover a wide range of fundamental, applied, industrial and engineering aspects of catalysis. The extensive range of highly efficient industrial techniques for observing and characterizing catalytically important surfaces is evident. The programme covered the following sessions: Mechanism, theory, in situ methods; Catalytic reaction on atomically clean surfaces; Catalytic reaction on zeolites and related substances; New methods and principles for catalyst preparation; Hydrotreatment reactions (HDS, HDN); Characterization of catalysts, application of novel techniques; Selective oxidation; New catalytic aspects of heteropoly acids and related compounds; Reaction of hydrocarbons; Nontraditional catalytic materials; Fuel upgrading; Alkane activation; Acid-base catalysis; New selective catalytic reactons, fine chemicals; Environmental catalysis; Industrial catalysis, deactivation, reactivation; Synthesis from syngas; Electrocatalysis; Photocatalysis. The invited lectures and 433 papers included in these volumes present an update on all areas of catalysis and applications.




Zeolite Characterization and Catalysis


Book Description

The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.




Introduction to Zeolite Science and Practice


Book Description

Zeolites and related molecular sieves have quickly become important pathways to new opportunities in the fields of oil processing and petrochemical synthesis. The signs of intense activity in both industry and academia are evident: burgeoning papers and patent applications; increasing numbers of industrial zeolite-based processes and their rapid expansion into organic chemicals manufacturing; recent progress in zeolite accessibility range, matrix behaviour, lattice components and satellite structures; and the recognition that zeolites, which are stable and can be regenerated, may be incorporated into new, environmentally friendly processes. This volume offers a thorough, up-to-date introduction to zeolites and such related materials as crystalline aluminium phosphates and clays. Its 16 chapters, each written by specialists, provide detailed treatments of zeolite theory (including a review of major developments), zeolite laboratory and research practice, and zeolite industry applications. Students and individuals entering the field will find Introduction to Zeolite Science and Practice a thorough guidebook. Experienced researchers will appreciate its in-depth coverage of the zeolite spectrum, including the latest views on zeolite structure, characterization and applications.




Ordered Porous Solids


Book Description

The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. Summarizes the latest developments in the field of ordered nanoporous solids Presents state-of-the-art coverage of applications related to porous solids Incorporates 28 contributions from experts across the disciplines