Innovations in Biotechnology for a Sustainable Future


Book Description

This contributed volume compiles the latest improvements in the field of biotechnology. It focuses on topics that comprises industrial, environment, agricultural and medical related issues to technology and biological studies and exhibits the correlation between the biological world and the dependence of humans on it. The book is organized into five parts covering the role of biotechnology in industrial products, environmental remediation, agriculture and pharmacological agents. Ranging from micro-scale studies to macro, it covers a huge domain of agricultural biotechnology and focuses on important commercial crops (e.g. cacao and coffee), arbuscular mycorrhizal fungi, flow and distribution of phosphorus in agricultural soils in the Latin American region. Overall, the book portrays the importance of modern biotechnology and its role in solving the problems in modern day life. The book is a ready reference for practicing students, researchers of environmental engineering, chemical engineering, agricultural engineering, and other allied fields likewise.




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.




Biotechnology in the Chemical Industry


Book Description

Biotechnology in the Chemical Industry: Towards a Green and Sustainable Future focuses on achievements and prospects for biotechnology in sustainable production of goods and services, especially those that are derived at present mostly from the traditional chemical industry. It considers the future impact of industrial biotechnology and lays out the major research areas which must be addressed to move from a flourishing set of scientific disciplines to a major contributor to a successful future knowledge-based economy. The book focuses on the research needed to underpin three broad topics: biomass, bio-processes and bio-products, including bio-energy. Readers, including advanced students, researchers, industry professionals, academics, analysts, consultants, and anyone else interested, or involved in biotechnology will find this book very informative. - Offers a comprehensive introduction to the subject for researchers interested in the biotechnological applications in chemical industry - Provides a state-of-the art update on the field - Presents the economic and ecological advantages of industrial biotechnology - Discusses efforts made by developing countries towards industrial biotechnology - Describes new biotechnological applications - Includes the major challenges facing industrial biotechnology




Science, Technology, and Innovation for Sustainable Development Goals


Book Description

After the United Nations adopted the 17 Sustainable Development Goals (SDGs) to "end poverty, protect the planet, and ensure prosperity for all," researchers and policy makers highlighted the importance of targeted investment in science, technology, and innovation (STI) to make tangible progress. Science, Technology, and Innovation for Sustainable Development Goals showcases the roles that STI solutions can play in meeting on-the-ground socio-economic and environmental challenges among domestic and international organizations concerned with the SDGs in three overlapping areas: agriculture, health, and environment/energy. Authors and researchers from 31 countries tackle both big-picture questions, such as scaling up the adoption and diffusion of new sustainable technologies, and specific, localized case studies, focusing on developing and middle-income countries and specific STI solutions and policies. Issues addressed include renewable energy, automated vehicles, vaccines, digital health, agricultural biotechnology, and precision agriculture. In bringing together diverse voices from both policy and academic spheres, this volume provides practical and relevant insights and advice to support policy makers and managers seeking to enhance the roles of STI in sustainable development.




Biofuels


Book Description

Evaluating a wealth of quantitative data, Biofuels: Biotechnology, Chemistry, and Sustainable Development discusses different types of biofuels, the science behind their production, the economics of their introduction to the marketplace, their environmental impacts, and their implications for world agriculture. It broadens the discussion on biofuel




Preparing for Future Products of Biotechnology


Book Description

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.




Environmental Effects of Transgenic Plants


Book Description

Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.




Environmental Biotechnology: For Sustainable Future


Book Description

Environmental sustainability is one of the biggest issues faced by the mankind. Rapid & rampant industrialization has put great pressure on the natural resources. To make our planet a sustainable ecosystem, habitable for future generations & provide equal opportunity for all the living creatures we not only need to make corrections but also remediate the polluted natural resources. The low-input biotechnological techniques involving microbes and plants can provide the solution for resurrecting the ecosystems. Bioremediation and biodegradation can be used to improve the conditions of polluted soil and water bodies. Green energy involving biofuels have to replace the fossil fuels to combat pollution & global warming. Biological alternatives (bioinoculants) have to replace harmful chemicals for maintaining sustainability of agro-ecosystems. The book will cover the latest developments in environmental biotech so as to use in clearing and maintaining the ecosystems for sustainable future.




New and Future Developments in Microbial Biotechnology and Bioengineering


Book Description

Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria. - Introduces the principles of microbial biotechnology and its application in crop improvement - Lists various new developments in enhancing plant productivity and efficiency - Explains the mechanisms of plant/microbial interactions and the beneficial use of these interactions in crop improvement - Explores various bacteria classes and their beneficial effects in plant growth and efficiency




Industrial Biotechnology


Book Description

The latest volume in the Advanced Biotechnology series provides an overview of the main product classes and platform chemicals produced by biotechnological processes today, with applications in the food, healthcare and fine chemical industries. Alongside the production of drugs and flavors as well as amino acids, bio-based monomers and polymers and biofuels, basic insights are also given as to the biotechnological processes yielding such products and how large-scale production may be enabled and improved. Of interest to biotechnologists, bio and chemical engineers, as well as those working in the biotechnological, chemical, and food industries.