Innovations in Green Nanoscience and Nanotechnology


Book Description

This book discusses how greener synthetic pathways are amenable and productive for the synthesis of novel nanomaterials. It furthers the integration of advances in green nanoscience and nanotechnology, including pathways dedicated to the design, development, and fabrication of a range of products and devices. Topics such as green nanotechnology for advanced energy systems, sustainable delivery systems, medicine, agri-nanotechnology for sustainable agriculture, nanotechnology in crop protection, and nanotechnology for soil conservation are included. FEATURES Provides a holistic view of green nanotechnology and its applications Places an emphasis on synthesis, characterization, and applications of green nanomaterials Discusses the development of innovative green synthetic pathways to produce novel biomaterials Includes characterization tools used in the material synthesis via green synthetic pathways Advocates green nanotechnology solutions for sustainability and energy This book is aimed at researchers and professionals in nanotechnology, green chemistry, and chemical engineering.




Innovations in Nanomaterials


Book Description

Nanomaterials represent a world of new possibilities and exciting opportunities. The problems facing mankind currently and those it will face in the future are and will be incredibly complex. As such, novel and innovative solutions to these problems will have to be explored. Problems centered, for example, in supplying enough energy or water in the future will have to be solved via sustainable solutions, as it is now clear that the continuation of current practices for an ever-increasing load will mean irreparable damage to the planet. The solutions to these challenges and others will have to be based on new approaches. These novel approaches will have their foundations in the development of new materials and protocols. The rise of nanotechnology over the last fifteen years or so now provides the opportunity for development of innovative and ground breaking approaches to society's pressing problems. This book provides a snapshot of the current development of new materials, ranging from nanoparticles to nanotubes to graphene to various hybrid materials and composites. These materials will without a doubt be the cornerstones of the novel approaches used to tackle mankind's most pressing problems in the 21st century. Specifically, this book explores the application of graphene in membranes, electrodes, biological applications and catalysis. There is also a basic exploration of nanocarbon chemistry. Biological interactions with nanomaterials are explored to develop bionics, sensors, medicines or imaging agents, and to detect and assess the materials' toxicity in various environments. Some fundamental work exploring nanostructures and transport properties is included and the use for such material as sensors, membranes or electrodes is discussed extensively.




Nano Tools and Devices for Enhanced Renewable Energy


Book Description

Nano Tools and Devices for Enhanced Renewable Energy addresses key challenges faced in major energy sectors as the world strives for more affordable and renewable energy sources. The book collates and discusses the latest innovations in nanotechnology for energy applications, providing a comprehensive single resource for those interested in renewable energy. Chapters cover a range of nano tools and devices, as well as renewable energy types and sources, from energy storage to geothermal energy. Materials scientists, engineers and environmental scientists interested in the application and evaluation of innovative nano tools and devices in renewable energy technologies will find this book very valuable. Nanotechnology can help to reduce energy consumption and lessen toxicity burdens on the environment. Despite the rapid growth of development and use of nanotechnology in the modern world, there are still challenges faced by researchers and development groups in industry and academia. This book helps solve the problems of reduced accessibility of relevant research, presenting important information on adverse impacts on the environment, human health, safety and sustainability. - Covers a range of nano tools and devices, as well as renewable energy types and sources, from energy storage to geothermal energy - Offers an insight into the commercialization and regulatory aspects of nanotechnology for renewable energy - Helps solve the problems of reduced accessibility of relevant information, presenting important research on adverse impacts on the environment, human health, safety and sustainability




Nanotechnology for Energy and Environmental Engineering


Book Description

This book examines the potential applications of nanoscience and nanotechnology to promote eco-friendly processes and techniques for energy and environment sustainability. Covering various aspects of both the synthesis and applications of nanoparticles and nanofluids for energy and environmental engineering, its goal is to promote eco-friendly processes and techniques. Accordingly, the book elaborates on the development of reliable, economical, eco-friendly processes through advanced nanoscience and technological research and innovations. Gathering contributions by researchers actively engaged in various domains of nanoscience and technology, it addresses topics such as nanoparticle synthesis (both top-down and bottom-up approaches); applications of nanomaterials, nanosensors and plasma discharge in pollution control; environmental monitoring; agriculture; energy recovery; production enhancement; energy conservation and storage; surface modification of materials for energy storage; fuel cells; pollution mitigation; and CO2 capture and sequestration. Given its scope, the book will be of interest to academics and researchers whose work involves nanotechnology or nanomaterials, especially as applied to energy and/or environmental sustainability engineering. Graduate students in the same areas will also find it a valuable resource.




Applying Nanotechnology for Environmental Sustainability


Book Description

Nanomaterials have been used for years in industries such as consumer products, textile production, and biomedicine, yet the literature outlining their use in environmental causes is limited. The safety, toxicity, transportation, and removal of this technology must be addressed as nanotechnology and nanomaterial use is expected to grow. Applying Nanotechnology for Environmental Sustainability addresses the applications of nanomaterials in the field of environmental conservation and sustainability, and analyses the potential risks associated with their use. It elucidates the scientific concepts and emerging technologies in nanoscience and nanotoxicity by offering a wide range of innovative topics and reviews regarding its use. This publication is essential for environmental engineers, researchers, consultants, students, regulators, and professionals in the field of nanotechnology.




Nanotechnology for Sustainable Manufacturing


Book Description

Nanotechnology has the potential to play an important role in increasing the sustainability of a wide range of industrial sectors. Nanomaterials could contribute to more sustainable manufacturing through cleaner, less wasteful production processes and can substitute conventional materials, leading to savings in raw materials and energy. Nanotechnology for Sustainable Manufacturing discusses recent progress in the areas of energy and materials efficiency related to resource savings and conservation of raw materials, which are drivers for the application of nanotechnology in the industrial setting. Written by leading experts from Europe, North America, Asia, and Australia, the book provides an innovative perspective by establishing connections between the subject areas associated with nanotechnology and by bridging the academic and industrial research gap. The topics covered include electronics, agrifood, aerospace, pulp and paper manufacturing, batteries, catalysts, solar energy, fuel cells, drinking water, and construction materials. The chapters offer insights into the diverse industries that are currently or likely to be impacted by developments in nanotechnology and nanomaterials. They cover applications such as nanotechnology for alternative energy generation, improving water quality, and novel uses in agriculture and forest products. The book also addresses the use of life-cycle analysis for assessing the sustainability of nanotechnology-based products and processes.




Innovations in Green Chemistry and Green Engineering


Book Description

Processes that meet the objectives of green chemistry and chemical engineering minimize waste and energy use, and eliminate toxic by-products. Given the ubiquitous nature of products from chemical processes in our lives, green chemistry and chemical engineering are vital components of any sustainable future. Gathering together ten peer-reviewed articles from the Encyclopedia of Sustainability Science and Technology, Innovations in Green Chemistry and Green Engineering provides a comprehensive introduction to the state-of-the-art in this key area of sustainability research. Worldwide experts present the latest developments on topics ranging from organic batteries and green catalytic transformations to green nanoscience and nanotoxicology. An essential, one-stop reference for professionals in research and industry, this book also fills the need for an authoritative course text in environmental and green chemistry and chemical engineering at the upper-division undergraduate and graduate levels.




Biotechnology for Zero Waste


Book Description

Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.




Green Nanotechnology


Book Description

A first step in developing a clean and sustainable future is to think differently about everyday products, in particular how they influence energy use. Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment explores the science and technology of tiny structures that have a huge potential to improve quality of life wh




Bioinspired and Green Synthesis of Nanostructures


Book Description

BIOINSPIRED AND GREEN SYNTHESIS OF NANOSTRUCTURES This unique book details various ways to synthesize advanced nanostructures using green methods, explores the design and development of sustainable advanced nanostructures, and discusses the antimicrobial and antiviral applications. The future of the world depends on immediately investing our time and effort in advancing ideas on ways to restrict the use of hazardous chemicals, thereby arresting further environmental degradation. To achieve this goal, nanotechnology has been an indispensable arena that has extended its wings into every aspect of modernization. For example, green synthetic protocols are being extensively researched to inhibit the harmful effects of chemical residues and reduce chemical wastes. This involves the study of nanotechnology for artful engineering at the molecular level across multiple disciplines. In recent years, nanotechnology has ventured away from the confines of the laboratory and has been able to conquer new domains to help us live better lives. Bioinspired and Green Synthesis of Nanostructures focuses on the recent developments and novel applications of bioinspired and biomimetic nanostructures as functionally advanced biomolecules with huge prospects for research, development, and engineering industries. It provides detailed coverage of the chemistry of each major class of synthesis of bioinspired nanostructures and their multiple functionalities. In addition, it reviews the new research results currently being introduced and analyzes the various green synthetic approaches for developing nanostructures, their distinctive characteristics, and their applications. The book provides readers with an understanding of the recent data, as well as various strategies for designing and developing advanced nanostructures using a greener approach. Audience The core audience of this book include materials scientists, nanoscientists, nanotechnologists, chemical and biological engineers, biochemists and biotechnologists. Industry process engineers and scientists working in nanomaterial synthesis will find this book extremely valuable.