Materials Processing and Manufacturing Science


Book Description

"Materials Science in Manufacturing focuses on materials science and materials processing primarily for engineering and technology students preparing for careers in manufacturing. The text also serves as a useful reference on materials science for the practitioner engaged in manufacturing as well as the beginning graduate student.Integrates theoretical understanding and current practices to provide a resource for students preparing for advanced study or career in industry. Also serves as a useful resource to the practitioner who works with diverse materials and processes, but is not a specialist in materials science. This book covers a wider range of materials and processes than is customary in the elementary materials science books.This book covers a wider range of materials and processes than is customary in the elementary materials science books.* Detailed explanations of theories, concepts, principles and practices of materials and processes of manufacturing through richly illustrated text* Includes new topics such as nanomaterials and nanomanufacturing, not covered in most similar works* Focuses on the interrelationship between Materials Science, Processing Science, and Manufacturing Technology




Innovations in Materials Processing


Book Description

The Army Materials and Mechanics Research Center in cooperation with the Office of Sponsored Programs of Syracuse University has been conducting the Annual Sagamore Army Materials Research Conferences since 1954. The specific purpose of these conferences has been to bring together scientists and engineers from academic institutions, industry and government to explore in depth a subject of importance to the Department of Defense, the Army, and the scientific community. This 30th Sagamore Conference, entitled Innovations in Materials Processing, has attempted to focus on the inter disciplinary nature of materials processing, looking at recent advancements in the development of unit processes from a range of standpoints from the understanding and control of the under lying mechanisms through their application as part of a manufactur ing sequence. In between, the classic link between processing and materials properties is firmly established. A broad range of materials are treated in this manner: metals, ceramics, plastics, and composites. The interdisciplinary nature of materials processing exists through its involvement with the basic sciences, with, process and product design, with process control, and ultimately with manufacturing engineering. Materials processing is interdisciplinary in another sense, through its application within all materials disciplines. The industrial community (and the Army as its customer) is becoming increasingly concerned with producibility/reliability/ affordability issues in advanced product development. These concerns will be adequately addressed only by employing the full range of disciplines encompassed within the field of materials processing.




Innovations in Everyday Engineering Materials


Book Description

This book provides an invaluable reference of materials engineering written for a broad audience in an engaging, effective way. Several stories explain how perseverance and organized research helps to discover new processes for making important materials and how new materials with unmatched properties are theoretically conceived, tested in the laboratory, mass produced and deployed for the benefit of all. This book provides a welcome introduction to how advances are made in the world of materials that sustain and define our contemporary standard of living. Suitable for trained materials scientists and the educated layman with an appreciation of engineering, the book will be especially appealing to the young materials engineer, for whom it will serve as a long-term reference due to its clear and rigorous illustration of the field's essential features.




Advances in Laser Materials Processing


Book Description

Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. - A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines - Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing - Provides revised, expanded and updated coverage




Advances in Sustainable Machining and Manufacturing Processes


Book Description

This text provides an in-depth overview of sustainability in machining processes, challenges during machining of difficult-to-cut materials and different ways of green machining in achieving sustainability. It discusses important topics including green and sustainable machining, dry machining, textured cutting coated tools for machining, solid lubricants-based machining, gas-cooled machining, cryogenic cooling for intelligent machining, artificial neural network for machining, big data based machining, and hybrid intelligent machining. This book- Covers advances in sustainable machining such as gas-cooled machining, near dry machining, and minimum quantity lubrication. Explores use of big data, machine learning and artificial intelligence for machining processes. Provides case studies and experimental design as well as results with analysis focusing on achieving sustainability. Discusses artificial intelligence and machine learning based machining processes. Cover the latest applications of sustainable manufacturing for a better understanding of the concepts. The text is primarily written for senior undergraduate, graduate students, and researchers in the fields of mechanical, manufacturing, industrial, production engineering and materials science.




Next Generation Materials and Processing Technologies


Book Description

This book presents the select proceedings of Conference on Research and Developments in Material Processing, Modelling and Characterization (RDMPMC 2020). It highlights the new technologies developed in the generation of rational materials for various applications with tailored properties. It covers fundamental research in emerging materials which includes biomaterials, composites, ceramics, functionally graded materials, energy materials, thin film materials, nanomaterials, nuclear materials, intermetallic, high strength materials, structural materials, super alloys, shape memory alloys and thermally enhanced materials. It includes the numerical modeling and computer simulation to investigate the properties and structure of materials. Few of the most relevant manufacturing techniques highlighted in this book are welding, coating, additive manufacturing, laser-based manufacturing, advanced machining processes, casting, forming and micro and nanoscale manufacturing processes. Given its contents, this book is beneficial to students, researchers and industry professionals.




Advances in Manufacturing and Processing of Materials and Structures


Book Description

Advances in Manufacturing and Processing of Materials and Structures cover the latest advances in materials and structures in manufacturing and processing including additive and subtractive processes. It's intended to provide a compiled resource that reviews details of the advances that have been made in recent years in manufacturing and processing of materials and structures. A key development incorporated within this book is 3D printing, which is being used to produce complex parts including composites with odd shape fibers, as well as tissue and body organs. This book has been tailored for engineers, scientists and practitioners in different fields such as aerospace, mechanical engineering, materials science and biomedicine. Biomimetic principles have also been integrated. Features Provides the latest state-of-the art on different manufacturing processes, including a biomimetics viewpoint Offers broad coverage of advances in materials and manufacturing Written by chapter authors who are world-class researchers in their respective fields Provides in-depth presentation of the latest 3D and 4D technologies related to various manufacturing disciplines Provides substantial references in each chapter to enhance further study




Fluid Bed Technology in Materials Processing


Book Description

Fluid Bed Technology in Materials Processing comprehensively covers the various aspects of fluidization engineering and presents an elaborate examination of the applications in a multitude of materials processing techniques. This singular resource discusses: All the basic aspects of fluidization essential to understand and learn about various techniques The range of industrial applications Several examples in extraction and process metallurgy Fluidization in nuclear engineering and nuclear fuel cycle with numerous examples Innovative techniques and several advanced concepts of fluidization engineering, including use and applications in materials processing as well as environmental and bio-engineering Pros and cons of various fluidization equipment and specialty of their applications, including several examples Design aspects and modeling Topics related to distributors effects and flow regimes A separate chapter outlines the importance of fluidization engineering in high temperature processing, including an analysis of the fundamental concepts and applications of high temperature fluidized bed furnaces for several advanced materials processing techniques. Presenting information usually not available in a single source, Fluid Bed Technology in Materials Processing serves Fluidization engineers Practicing engineers in process metallurgy, mineral engineering, and chemical metallurgy Researchers in the field of chemical, metallurgical, nuclear, biological, environmental engineering Energy engineering professionals High temperature scientists and engineers Students and professionals who adopt modeling of fluidization in their venture for design and scale up




Energetic Materials


Book Description

This book will take an in-depth look at the technologies, processes, and capabilities to develop and produce "next generation" energetic materials for both commercial and defense applications, including military, mining operations, oil production and well perforation, and construction demolition. It will serve to highlight the critical technologies, latest developments, and the current capability gaps that serve as barriers to military fielding or transition to the commercial marketplace. It will also explain how the processing technologies can be spun out for use in other non-energetics related industries.




Materials Processing


Book Description

Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers, Second Edition is the first textbook to bring the fundamental concepts of materials processing together in a unified approach that highlights the overlap in scientific and engineering principles. It teaches students the key principles involved in the processing of engineering materials, specifically metals, ceramics and polymers, from starting or raw materials through to the final functional forms. Its self-contained approach is based on the state of matter most central to the shaping of the material: melt, solid, powder, dispersion and solution, and vapor. With this approach, students learn processing fundamentals and appreciate the similarities and differences between the materials classes. This fully updated edition includes expanded coverage on additive manufacturing, as well as adding a new section on machining. The organization has been modified and a greater emphasis has been placed on the fundamentals of processing and manufacturing methods. This book can be utilized by upper-level undergraduates and beginning graduate students in Materials Science and Engineering who are already schooled in the structure and properties of metals, ceramics and polymers, and are ready to apply their knowledge to materials processing. It will also appeal to students from other engineering disciplines who have completed an introductory materials science and engineering course. - Includes comprehensive coverage on the fundamental concepts of materials processing - Provides coverage of metals, ceramics, and polymers in one text - Presents examples of both standard and newer additive manufacturing methods throughout - Gives students an overview on the methods that they will likely encounter in their careers