Soft Computing for Reservoir Characterization and Modeling


Book Description

In the middle of the 20th century, Genrich Altshuller, a Russian engineer, analysed hundreds of thousands of patents and scientific publications. From this analysis, he developed TRIZ (G. Altshuller, "40 Principles: TRIZ Keys to Technical Innovation. TRIZ Tools," Volume 1, First Edition, Technical Innovation Center, Inc. , Worcester, MA, January 1998; Y. Salamatov, "TRIZ: The Right Solution at the Right Time. A Guide to Innovative Problem Solving. " Insytec B. V. , 1999), the theory of inventive problem solving, together with a series of practical tools for helping engineers solving technical problems. Among these tools and theories, the substance-field theory gives a structured way of representing problems, the patterns of evolution show the lifecycle of technical systems, the contradiction matrix tells you how to resolve technical contradictions, using the forty principles that describe common ways of improving technical systems. For example, if you want to increase the strength of a device, without adding too much extra weight to it, the contradiction matrix tells you that you can use "Principle 1: Segmentation," or "Principle 8: Counterweight," or "Principle 15: Dynamicity," or "Principle 40: Composite Materials. " I really like two particular ones: "Principle 1: Segmentation," and Principle 15: Dynamicity. " "Segmentation" shows how systems evolve from an initial monolithic form into a set of independent parts, then eventually increasing the number of parts until each part becomes small enough that it cannot be identified anymore.




Reservoir Characterization


Book Description

Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.







Practical Reservoir Engineering and Characterization


Book Description

Practical Reservoir Characterization expertly explains key technologies, concepts, methods, and terminology in a way that allows readers in varying roles to appreciate the resulting interpretations and contribute to building reservoir characterization models that improve resource definition and recovery even in the most complex depositional environments. It is the perfect reference for senior reservoir engineers who want to increase their awareness of the latest in best practices, but is also ideal for team members who need to better understand their role in the characterization process. The text focuses on only the most critical areas, including modeling the reservoir unit, predicting well behavior, understanding past reservoir performance, and forecasting future reservoir performance. The text begins with an overview of the methods required for analyzing, characterizing, and developing real reservoirs, then explains the different methodologies and the types and sources of data required to characterize, forecast, and simulate a reservoir. - Thoroughly explains the data gathering methods required to characterize, forecast, and simulate a reservoir - Provides the fundamental background required to analyze, characterize, and develop real reservoirs in the most complex depositional environments - Presents a step-by-step approach for building a one, two, or three-dimensional representation of all reservoir types




Reservoir Characterization, Modeling and Quantitative Interpretation


Book Description

Reservoir Characterization, Modeling and Quantitative Interpretation: Recent Workflows to Emerging Technologies offers a wide spectrum of reservoir characterization techniques and technologies, focusing on the latest breakthroughs and most efficient methodologies in hydrocarbon exploration and development. Topics covered include 4D seismic technologies, AVAz inversion, fracture characterization, multiscale imaging technologies, static and dynamic reservoir characterization, among others. The content is delivered through an inductive approach, which will help readers gain comprehensive insights on advanced practices and be able to relate them to other subareas of reservoir characterization, including CO2 storage and data-driven modeling. This will be especially useful for field scientists in collecting and analyzing field data, prospect evaluation, developing reservoir models, and adopting new technologies to mitigate exploration risk. They will be able to solve the practical and challenging problems faced in the field of reservoir characterization, as it will offer systematic industrial workflows covering every aspect of this branch of Earth Science, including subsurface geoscientific perspectives of carbon geosequestration. This resource is a 21st Century guide for exploration geologists, geoscience students at postgraduate level and above, and petrophysicists working in the oil and gas industry. - Covers the latest and most effective technologies in reservoir characterization, including Avo analysis, AVAz inversion, wave field separation and Machine Learning techniques - Provides a balanced blend of both theoretical and practical approaches for solving challenges in reservoir characterization - Includes detailed industry-standard practical workflows, along with code structures for algorithms and practice exercises




Reservoir Characterization II


Book Description

Reservoir Characterization II contains the proceedings of the Second International Reservoir Characterization Conference held in Dallas, Texas in June 1989. Contributors focus on the characterization of reservoir processes and cover topics ranging from surface roughness in porous media and reservoir characterization at the mesoscopic scale to shale clast heterogeneities and their effect on fluid flow, permeability patterns in fluvial sandstones, and reservoir management using 3-D seismic data. This book is organized into six sections encompassing 43 chapters. The first 20 chapters deal with reservoir characterization at the microscopic, mesoscopic, and macroscopic scales. Topics include low-contrast resistivity sandstone formations; the use of centrifuge and computer tomography to quantify saturation distribution and capillary pressures; and cross-well seismology as a tool for reservoir geophysics. The chapters that follow deal with reservoir characterization at the megascopic scale; fractal heterogeneity of clastic reservoirs; heterogeneity and effective permeability of porous rocks; and drilling fluid design based on reservoir characterization. A chapter that outlines a procedure for estimating permeability anisotropy with a minipermeameter concludes the book. This book is a valuable resource for students and practitioners of petroleum engineering, geology and geological engineering, petroleum exploration, and geophysics.




Volcanic Gas Reservoir Characterization


Book Description

Volcanic gas reservoirs are the new natural gas frontier. Once thought too complex, too harsh on the drilling bit, and too difficult to characterize, reservoir engineers and petroleum geologists alike now manage more advanced seismic and logging tools, making these "impossible" field developments possible. Bridging meaningful information about these complicated provinces and linking various unconventional methods and techniques, Volcanic Gas Reservoir Characterization: Describes a set of leading-edge integrated volcanic gas reservoir characterization techniques, helping to ensure the effective development of the field Reveals the grade and relationship of volcanic stratigraphic sequence Presents field identification and prediction methods, and interpretation technology of reservoir parameters, relating these to similar complex fields such as shale These innovative approaches and creative methods have been successfully applied to actual development of volcanic gas reservoirs. By sharing the methods and techniques used in this region with reservoir engineers and petroleum geologists all over the world, those with better understanding of these unconventional basins will begin to consider volcanic rock like any other reservoir. Summarizes the research and explains detailed case studies of volcanic gas reservoir developments, showing the latest achievements and lessons learned Supplies knowledge on volcanic gas reservoir basins to provide meaningful insight into similar complex reservoirs such as shale, coal bed methane, and heavy oil basins Contains extensive methodology, strong practicality and high innovation, making this an ideal book for both the practicing and seasoned reservoir engineer and petroleum geologists working with complex reservoirs




Annual Report


Book Description




Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, Part II


Book Description

This second volume on carbonate reservoirs completes the two-volume treatise on this important topic for petroleum engineers and geologists. Together, the volumes form a complete, modern reference to the properties and production behaviour of carbonate petroleum reservoirs.The book contains valuable glossaries to geologic and petroleum engineering terms providing exact definitions for writers and speakers. Lecturers will find a useful appendix devoted to questions and problems that can be used for teaching assignments as well as a guide for lecture development. In addition, there is a chapter devoted to core analysis of carbonate rocks which is ideal for laboratory instruction.Managers and production engineers will find a review of the latest laboratory technology for carbonate formation evaluation in the chapter on core analysis. The modern classification of carbonate rocks is presented with petroleum production performance and overall characterization using seismic and well test analyses. Separate chapters are devoted to the important naturally fractured and chalk reservoirs.Throughout the book, the emphasis is on formation evaluation and performance.This two-volume work brings together the wide variety of approaches to the study of carbonate reservoirs and will therefore be of value to managers, engineers, geologists and lecturers.