Innovative Dosage Forms


Book Description

Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.




Dosage Form Design Parameters


Book Description

Dosage Form Design Parameters, Volume II, examines the history and current state of the field within the pharmaceutical sciences, presenting key developments. Content includes drug development issues, the scale up of formulations, regulatory issues, intellectual property, solid state properties and polymorphism. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of dosage form design parameters. Chapters delve into a particular aspect of this fundamental field, covering principles, methodologies and the technologies employed by pharmaceutical scientists. In addition, the book contains a comprehensive examination suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnology and related industries. - Examines the history and recent developments in drug dosage forms for pharmaceutical sciences - Focuses on physicochemical aspects, prefomulation solid state properties and polymorphism - Contains extensive references for further discovery and learning that are appropriate for advanced undergraduates, graduate students and those interested in drug dosage design




Dermal Drug Delivery


Book Description

With the continued advancement of better-quality control and patient outcome reporting systems, changes in the development, control, and regulation of all pharmaceutical delivery systems including transdermal and topical products have been happening on a continuous basis. In light of various quality issues that have been reported by patients and practitioners resulting in the recall or removal of products from the market, both the pharmaceutical industries and regulatory agencies have been adopting new measures to address these issues. With chapters written by experts in this field, this book takes a 21st century multidisciplinary and cross-functional look at these dosage forms to improve the development, design, manufacturing, quality, clinical performance, safety, and regulation of these products. This book offers a wealth of up-to-date information organized in a logical sequence corresponding to various stages of research, development, and commercialization of dermal drug delivery products. The authors have been carefully selected from different sectors of pharmaceutical science for their expertise in their selected areas to present objectively a balanced view of the current state of these products development and commercialization via regulatory approval. Their insights will provide useful information to others to ensure the successful development of the next generation dermal drug products. Key Features: Presents current advancements including new technologies of transdermal and topical dosage forms. Presents challenges in the development of the new generation of transdermal and topical dosage forms. Introduces new technologies and QbD (quality by design) aspects of manufacturing and control strategies. Includes new perspectives on pre-clinical and clinical development, regulatory considerations, safety and quality. Discusses regulatory challenges, gaps, and future considerations for dermal drug delivery systems.




Dosage Form Design Considerations


Book Description

Dosage Form Design Parameters, Volume I, examines the history and current state of the field within the pharmaceutical sciences, presenting key developments. Content includes drug development issues, the scale up of formulations, regulatory issues, intellectual property, solid state properties and polymorphism. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of dosage form design parameters. Chapters delve into a particular aspect of this fundamental field, covering principles, methodologies and the technologies employed by pharmaceutical scientists. In addition, the book contains a comprehensive examination suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnology and related industries. - Examines the history and recent developments in drug dosage forms for pharmaceutical sciences - Focuses on physicochemical aspects, prefomulation solid state properties and polymorphism - Contains extensive references for further discovery and learning that are appropriate for advanced undergraduates, graduate students and those interested in drug dosage design




Innovative Dosage Forms


Book Description

Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.




3D Printing of Pharmaceuticals


Book Description

3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.




Novel Drug Delivery Technologies


Book Description

The application of drug delivery is a valuable, cost-effective lifecycle management resource. By endowing drugs with new and innovative therapeutic benefits, drug delivery systems extend products’ profitable lifecycle, giving pharmaceutical companies competitive and financial advantages, and providing patients with improved medications. Formulation development is now being used to create new dosage forms for existing products, which not only reduces the time and expense involved in new drug development, but also helps with regard to patent protection and bypassing existing patents. Today’s culture demands convenience, a major factor determining adherence to drug therapy. Over the past few years, patient convenience-oriented research in the field of drug delivery has yielded a range of innovative drug-delivery options. As a result, various drug-delivery systems, including medicated chewing gums, oral dispersible tablets, medicated lozenges and lollipops, have now hit the market and are very popular. These dosage forms offer a highly convenient way to dose medications, not only for special population groups with swallowing difficulties, such as children and the elderly, but for the general populace as well. This book provides valuable insights into a number of formulation design approaches that are currently being used, or could be used, to provide new benefits from existing drug molecules.




How to Develop Robust Solid Oral Dosage Forms


Book Description

How to Develop Robust Solid Oral Dosage Forms from Conception to Post-Approval uses a practical and hands-on approach to cover the development process of solid oral dosage forms in one single source. The book details all of the necessary steps from formulation through the post-approval phase and contains industry case studies, real world advice, and troubleshooting tips. By merging the latest scientific information with practical instructions, this book provides pharmaceutical scientists in formulation research and development with a concrete look at the key aspects in the development of solid oral dosage forms. - Focuses on important topics, such as robustness, bioavailability, formulation design, continuous processing, stability tests, modified release dosage forms, international guidelines, process scale-up, and much more - Part of the Expertise in Pharmaceutical Process Technology series edited by Michael Levin - Discusses common, real-world problems and offers both theoretical and practical solutions to these everyday issues




The Changing Economics of Medical Technology


Book Description

Americans praise medical technology for saving lives and improving health. Yet, new technology is often cited as a key factor in skyrocketing medical costs. This volume, second in the Medical Innovation at the Crossroads series, examines how economic incentives for innovation are changing and what that means for the future of health care. Up-to-date with a wide variety of examples and case studies, this book explores how payment, patent, and regulatory policiesâ€"as well as the involvement of numerous government agenciesâ€"affect the introduction and use of new pharmaceuticals, medical devices, and surgical procedures. The volume also includes detailed comparisons of policies and patterns of technological innovation in Western Europe and Japan. This fact-filled and practical book will be of interest to economists, policymakers, health administrators, health care practitioners, and the concerned public.




Pharmaceutical Excipients


Book Description

This book provides an overview of excipients, their functionalities in pharmaceutical dosage forms, regulation, and selection for pharmaceutical products formulation. It includes development, characterization methodology, applications, and up-to-date advances through the perspectives of excipients developers, users, and regulatory experts. Covers the sources, characterization, and harmonization of excipients: essential information for optimal excipients selection in pharmaceutical development Describes the physico-chemical properties and biological effects of excipients Discusses chemical classes, safety and toxicity, and formulation Addresses recent efforts in the standardization and harmonization of excipients