Innovative Supply Chain Management via Digitalization and Artificial Intelligence


Book Description

This book focuses on the impact of artificial intelligence (AI) and machine learning (ML) models on supply chain operations in industry 4.0. The chapters illustrate the AI and ML models for all functional areas of operations in SCM. The book also includes examples using ML models like handling supply-to-demand imbalances, triggering automated responses, and reinforcing customer relationships. It describes the evolution of blockchain technology coupled with the ability to automate business logic for the transparency of goods, infrastructure, products, and licenses in software. The book also includes case studies that provide a problem statement and industry overcome by applying ML and AI technologies. This book is suitable for undergraduates, postgraduates, industrial professionals, business executives, entrepreneurs, and freelancers to encourage practical learning on AI and ML algorithms in SCM 4.0. Additionally, this book will provide computer science and information system professionals with the latest technologies embedded in the corporate world.




Next Generation Supply Chains


Book Description

This open access book explores supply chains strategies to help companies face challenges such as societal emergency, digitalization, climate changes and scarcity of resources. The book identifies industrial scenarios for the next decade based on the analysis of trends at social, economic, environmental technological and political level, and examines how they may impact on supply chain processes and how to design next generation supply chains to answer these challenges. By mapping enabling technologies for supply chain innovation, the book proposes a roadmap for the full implementation of the supply chain strategies based on the integration of production and logistics processes. Case studies from process industry, discrete manufacturing, distribution and logistics, as well as ICT providers are provided, and policy recommendations are put forward to support companies in this transformative process.




Logistics 4.0


Book Description

Industrial revolutions have impacted both, manufacturing and service. From the steam engine to digital automated production, the industrial revolutions have conduced significant changes in operations and supply chain management (SCM) processes. Swift changes in manufacturing and service systems have led to phenomenal improvements in productivity. The fast-paced environment brings new challenges and opportunities for the companies that are associated with the adaptation to the new concepts such as Internet of Things (IoT) and Cyber Physical Systems, artificial intelligence (AI), robotics, cyber security, data analytics, block chain and cloud technology. These emerging technologies facilitated and expedited the birth of Logistics 4.0. Industrial Revolution 4.0 initiatives in SCM has attracted stakeholders’ attentions due to it is ability to empower using a set of technologies together that helps to execute more efficient production and distribution systems. This initiative has been called Logistics 4.0 of the fourth Industrial Revolution in SCM due to its high potential. Connecting entities, machines, physical items and enterprise resources to each other by using sensors, devices and the internet along the supply chains are the main attributes of Logistics 4.0. IoT enables customers to make more suitable and valuable decisions due to the data-driven structure of the Industry 4.0 paradigm. Besides that, the system’s ability of gathering and analyzing information about the environment at any given time and adapting itself to the rapid changes add significant value to the SCM processes. In this peer-reviewed book, experts from all over the world, in the field present a conceptual framework for Logistics 4.0 and provide examples for usage of Industry 4.0 tools in SCM. This book is a work that will be beneficial for both practitioners and students and academicians, as it covers the theoretical framework, on the one hand, and includes examples of practice and real world.







The Art of Structuring


Book Description

Structuring, or, as it is referred to in the title of this book, the art of structuring, is one of the core elements in the discipline of Information Systems. While the world is becoming increasingly complex, and a growing number of disciplines are evolving to help make it a better place, structure is what is needed in order to understand and combine the various perspectives and approaches involved. Structure is the essential component that allows us to bridge the gaps between these different worlds, and offers a medium for communication and exchange. The contributions in this book build these bridges, which are vital in order to communicate between different worlds of thought and methodology – be it between Information Systems (IS) research and practice, or between IS research and other research disciplines. They describe how structuring can be and should be done so as to foster communication and collaboration. The topics covered reflect various layers of structure that can serve as bridges: models, processes, data, organizations, and technologies. In turn, these aspects are complemented by visionary outlooks on how structure influences the field.







Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence


Book Description

Emotional intelligence has emerged as an important area of research in the artificial intelligence field as it covers a wide range of real-life domains. Though machines may never need all the emotional skills that people need, there is evidence to suggest that machines require at least some of these skills to appear intelligent when interacting with people. To understand how deep learning-based emotional intelligence can be applied and utilized across industries, further study on its opportunities and future directions is required. Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence explores artificial intelligence applications, such as machine and deep learning, in emotional intelligence and examines their use towards attaining emotional intelligence acceleration and augmentation. It provides research on tools used to simplify and streamline the formation of deep learning for system architects and designers. Covering topics such as data analytics, deep learning, knowledge management, and virtual emotional intelligence, this reference work is ideal for computer scientists, engineers, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.




Artificial Intelligence and Smart Agriculture Technology


Book Description

This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.







Evolution of Cross-Sector Cyber Intelligent Markets


Book Description

In today's digital age, cyber threats have become an ever-increasing risk to businesses, governments, and individuals worldwide. The deep integration of technology into every facet of modern life has given rise to a complex and interconnected web of vulnerabilities. As a result, traditional, sector-specific approaches to cybersecurity have proven insufficient in the face of these sophisticated and relentless adversaries. The need for a transformative solution that transcends organizational silos and fosters cross-sector collaboration, information sharing, and intelligence-driven defense strategies is now more critical than ever. Evolution of Cross-Sector Cyber Intelligent Markets explores the changes occurring within the field of intelligent markets, noting a significant paradigm shift that redefines cybersecurity. Through engaging narratives, real-world examples, and in-depth analysis, the book illuminates the key principles and objectives driving this evolution, shedding light on innovative solutions and collaborative efforts aimed at securing our digital future.