Input/Output in Parallel and Distributed Computer Systems


Book Description

Input/Output in Parallel and Distributed Computer Systems has attracted increasing attention over the last few years, as it has become apparent that input/output performance, rather than CPU performance, may be the key limiting factor in the performance of future systems. This I/O bottleneck is caused by the increasing speed mismatch between processing units and storage devices, the use of multiple processors operating simultaneously in parallel and distributed systems, and by the increasing I/O demands of new classes of applications, like multimedia. It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple levels of the memory hierarchy. All indications are that the I/O bottleneck will be with us for some time to come, and is likely to increase in importance. Input/Output in Parallel and Distributed Computer Systems is based on papers presented at the 1994 and 1995 IOPADS workshops held in conjunction with the International Parallel Processing Symposium. This book is divided into three parts. Part I, the Introduction, contains four invited chapters which provide a tutorial survey of I/O issues in parallel and distributed systems. The chapters in Parts II and III contain selected research papers from the 1994 and 1995 IOPADS workshops; many of these papers have been substantially revised and updated for inclusion in this volume. Part II collects the papers from both years which deal with various aspects of system software, and Part III addresses architectural issues. Input/Output in Parallel and Distributed Computer Systems is suitable as a secondary text for graduate level courses in computer architecture, software engineering, and multimedia systems, and as a reference for researchers and practitioners in industry.




Input/Output in Parallel and Distributed Computer Systems


Book Description

Input/Output in Parallel and Distributed Computer Systems has attracted increasing attention over the last few years, as it has become apparent that input/output performance, rather than CPU performance, may be the key limiting factor in the performance of future systems. This I/O bottleneck is caused by the increasing speed mismatch between processing units and storage devices, the use of multiple processors operating simultaneously in parallel and distributed systems, and by the increasing I/O demands of new classes of applications, like multimedia. It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple levels of the memory hierarchy. All indications are that the I/O bottleneck will be with us for some time to come, and is likely to increase in importance. Input/Output in Parallel and Distributed Computer Systems is based on papers presented at the 1994 and 1995 IOPADS workshops held in conjunction with the International Parallel Processing Symposium. This book is divided into three parts. Part I, the Introduction, contains four invited chapters which provide a tutorial survey of I/O issues in parallel and distributed systems. The chapters in Parts II and III contain selected research papers from the 1994 and 1995 IOPADS workshops; many of these papers have been substantially revised and updated for inclusion in this volume. Part II collects the papers from both years which deal with various aspects of system software, and Part III addresses architectural issues. Input/Output in Parallel and Distributed Computer Systems is suitable as a secondary text for graduate level courses in computer architecture, software engineering, and multimedia systems, and as a reference for researchers and practitioners in industry.




Scalable Input/Output


Book Description

The major research results from the Scalable Input/Output Initiative, exploring software and algorithmic solutions to the I/O imbalance. As we enter the "decade of data," the disparity between the vast amount of data storage capacity (measurable in terabytes and petabytes) and the bandwidth available for accessing it has created an input/output bottleneck that is proving to be a major constraint on the effective use of scientific data for research. Scalable Input/Output is a summary of the major research results of the Scalable I/O Initiative, launched by Paul Messina, then Director of the Center for Advanced Computing Research at the California Institute of Technology, to explore software and algorithmic solutions to the I/O imbalance. The contributors explore techniques for I/O optimization, including: I/O characterization to understand application and system I/O patterns; system checkpointing strategies; collective I/O and parallel database support for scientific applications; parallel I/O libraries and strategies for file striping, prefetching, and write behind; compilation strategies for out-of-core data access; scheduling and shared virtual memory alternatives; network support for low-latency data transfer; and parallel I/O application programming interfaces.




Introduction to Parallel Computing


Book Description

A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.




Topics in Parallel and Distributed Computing


Book Description

Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts




Handbook on Parallel and Distributed Processing


Book Description

Here, authors from academia and practice provide practitioners, scientists and graduates with basic methods and paradigms, as well as important issues and trends across the spectrum of parallel and distributed processing. In particular, they cover such fundamental topics as efficient parallel algorithms, languages for parallel processing, parallel operating systems, architecture of parallel and distributed systems, management of resources, tools for parallel computing, parallel database systems and multimedia object servers, as well as the relevant networking aspects. A chapter is dedicated to each of parallel and distributed scientific computing, high-performance computing in molecular sciences, and multimedia applications for parallel and distributed systems.




Applied Parallel Computing


Book Description

The book provides a practical guide to computational scientists and engineers to help advance their research by exploiting the superpower of supercomputers with many processors and complex networks. This book focuses on the design and analysis of basic parallel algorithms, the key components for composing larger packages for a wide range of applications.




Algorithms - ESA '98


Book Description

9




Digital Systems and Applications


Book Description

New design architectures in computer systems have surpassed industry expectations. Limits, which were once thought of as fundamental, have now been broken. Digital Systems and Applications details these innovations in systems design as well as cutting-edge applications that are emerging to take advantage of the fields increasingly sophisticated capabilities. This book features new chapters on parallelizing iterative heuristics, stream and wireless processors, and lightweight embedded systems. This fundamental text— Provides a clear focus on computer systems, architecture, and applications Takes a top-level view of system organization before moving on to architectural and organizational concepts such as superscalar and vector processor, VLIW architecture, as well as new trends in multithreading and multiprocessing. includes an entire section dedicated to embedded systems and their applications Discusses topics such as digital signal processing applications, circuit implementation aspects, parallel I/O algorithms, and operating systems Concludes with a look at new and future directions in computing Features articles that describe diverse aspects of computer usage and potentials for use Details implementation and performance-enhancing techniques such as branch prediction, register renaming, and virtual memory Includes a section on new directions in computing and their penetration into many new fields and aspects of our daily lives