Inspection and Maintenance of Bridge Stay Cable Systems


Book Description

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 353: Inspection and Maintenance of Bridge Stay Cable Systems identifies and explains various inspection and maintenance techniques for bridge stay cable systems. It discusses both short- and long-term approaches. The report information on methods for inspections and assessments, including nondestructive testing and evaluation procedures; repair and retrofit; methods for control of cable vibrations, including rainwind vibrations; stay cable fatigue and failure; effectiveness of various inspection and repair methods; limitations of available technologies; and trends and recommendations for future study.




Acceptance of Stay Cable Systems Using Prestressing Steels


Book Description

This fib Recommendation gives technical guidelines regarding design, testing, acceptance, installation, qualification, inspection and maintenance of stay cable systems using prestressing steels (strands, wires or bars) as tensile elements, which can be applied internationally. This Recommendation is applicable for cable-stayed bridges and other suspended structures such as roofs. It may also be used for hangers in arch structures and as suspension cables, as appropriate. This Recommendations has been formulated by an international working group comprising more than 20 experts from administrative authorities, universities, laboratories, owners, structural designers, suppliers of prestressing steels and stay cable suppliers. The text has been written to cover best construction practices around the world, and to provide material specifications that are considered to be the most advanced available at the time of preparing this text. For ease of use (for client, designer and cable supplier), the complex content has been arranged thematically according to the system components into chapters focusing on performance characteristics, requirements and acceptance criteria. Requirements and comments have been specified for all parties involved in design and construction in order to aim for a uniform and high quality and durability. The interfaces to the structural designer are highlighted. The essential subjects are: Design and detailing of stay cables including saddles and damping devices Durability requirements and corrosion protection systems Requirements for the materials Testing requirements for the stay cables Installation, tolerances, qualification of companies and personnel Inspection, maintenance and repair. This Recommendation does not cover the technology of stay cables whose tensile elements are ropes, locked-coil cables, etc. or which consist of composite materials. Nevertheless, in many cases the specified performance criteria may also be applicable to these systems, although numerical values given for the acceptance criteria may need to be adjusted. For these systems it has been difficult to provide multiple protective layers similar to those specified for stay cables made from prestressing steel and therefore, the quality of corrosion protection may not be equivalent. While extradosed cables have similarities with stay cables, generally agreed design and system acceptance criteria are not yet available and therefore, this type of cable is not covered.




Risk-Based Strategies for Bridge Maintenance


Book Description

Effective maintenance of bridge structures comprises a broad spectrum of plans for repairs and services implemented to enable bridges to perform their intended function. These include in-depth inspection, fatigue analysis, design of mitigation measures and construction to avert component deterioration. Several incidents of in-service and under construction bridge failures have recently taken place. These dramatic failures emphasize the importance of risk-based inspections and analysis of real-life data to evaluate reliability of bridges. To effectuate benefits of reliability analysis in bridge maintenance, work on theoretical reliability must be equipped with practical analytical tools. Such an approach must underscore risk elements and identify processes to manage risk and avoid unexpected outcomes of failures and service disruption of bridges. The devastating earthquakes of February 6, 2023, in the southern region of Turkey near the northern border of Syria, which claimed tens of thousands of lives, caused enormous structural damage and staggering economic losses. These seismic events brought to focus on the vitality of instilling infrastructure routes that must accommodate emergency management plans to integrate the influx of medical and rescue response teams. The safe operation of bridges along these routes is indispensable for mobilization and deployment of rescue teams, medical personnel, humanitarian assistance, and the supply of food and water. The reliability of access routes and bridges is defined by their ability to adequately function as planned to effectuate emergency management plans, in the event of a similar seismic event, anywhere in the world. Risk-Based Strategies for Bridge Maintenance contains selected papers presented at the 11th New York City Bridge Conference (New York City, USA, 21-22 August 2023), and discusses issues of reliability, risk assessment, management, maintenance, inspection, monitoring, design, preservation, and rehabilitation of bridges. The book is aimed at bridge engineers.




Proceedings of the 3rd International Conference on Sustainability in Civil Engineering


Book Description

This book contains the proceedings of the 3rd International Conference on Sustainability in Civil Engineering, ICSCE 2020, held on 26–27 November 2020, in Hanoi, Vietnam. It presents the expertise of scientists and engineers in academia and industry in the field of bridge and highway engineering, construction materials, environmental engineering, engineering in industry 4.0, geotechnical engineering, structural damage detection and health monitoring, structural engineering, geographic information system engineering, traffic, transportation and logistics engineering, water resources, estuary and coastal engineering.




Cable Supported Bridges


Book Description

Fourteen years on from its last edition, Cable Supported Bridges: Concept and Design, Third Edition, has been significantly updated with new material and brand new imagery throughout. Since the appearance of the second edition, the focus on the dynamic response of cable supported bridges has increased, and this development is recognised with two new chapters, covering bridge aerodynamics and other dynamic topics such as pedestrian-induced vibrations and bridge monitoring. This book concentrates on the synthesis of cable supported bridges, suspension as well as cable stayed, covering both design and construction aspects. The emphasis is on the conceptual design phase where the main features of the bridge will be determined. Based on comparative analyses with relatively simple mathematical expressions, the different structural forms are quantified and preliminary optimization demonstrated. This provides a first estimate on dimensions of the main load carrying elements to give in an initial input for mathematical computer models used in the detailed design phase. Key features: Describes evolution and trends within the design and construction of cable supported bridges Describes the response of structures to dynamic actions that have attracted growing attention in recent years Highlights features of the different structural components and their interaction in the entire structural system Presents simple mathematical expressions to give a first estimate on dimensions of the load carrying elements to be used in an initial computer input This comprehensive coverage of the design and construction of cable supported bridges provides an invaluable, tried and tested resource for academics and engineers.




Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks


Book Description

Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.




Recommendations for Stay Cable Design, Testing and Installation


Book Description

Published in SI units, and re-organized into a Load and Resistance Factor Design (LRED) format, designed to be used with the AASHTO LRED Bridge Design Code.







Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges


Book Description

Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.




Structural Health Monitoring of Long-Span Suspension Bridges


Book Description

Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world’s most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.