Instabilities and Nonequilibrium Structures VI


Book Description

This book contains two introductory papers on important topics of nonlinear physics. The first one, by M. San Miguel et al., refers to the effect of noise in nonequilibrium systems. The second, by M.E. Brachet, is a modern introduction to turbulence in fluids. The material can be very useful for short courses and is presented accordingly. The authors have made their texts self-contained. The volume also contains a selection of the invited seminars given at the Sixth International Workshop on Instabilities and Nonequilibrium Structures. Audience: This book should be of interest to graduate students and scientists interested in the fascinating problems of nonlinear physics.




Instabilities and Nonequilibrium Structures II


Book Description

We present here a selection of the seminars given at the Second International Workshop on Instabilities and Nonequilibrium Structures in Valparaiso, Chile, in December 1987. The Workshop was organized by Facultad de Ciencias Fisicas y Matematicas of Universidad de Chile and by Universidad Tecnica Federico Santa Maria where it took place. This periodic meeting takes place every two years in Chile and aims to contribute to the efforts of Latin America towards the development of scientific research. This development is certainly a necessary condition for progress in our countries and we thank our lecturers for their warm collaboration to fulfill this need. We are also very much indebted to the Chilean Academy of Sciences for sponsoring officially this Workshop. We thank also our sponsors and supporters for their valuable help, and most especially the Scientific Cooperation Program of France, UNESCO, Ministerio de Educaci6n of Chile and Fundaci6n Andes. We are grateful to Professor Michiel Hazewinkel for including this book in his series and to Dr. David Larner of Kluwer for his continuous interest and support to this project.




Dynamics and Randomness II


Book Description

This book contains the lectures given at the Second Conference on Dynamics and Randomness held at the Centro de Modelamiento Matemático of the Universidad de Chile, from December 9-13, 2003. This meeting brought together mathematicians, theoretical physicists, theoretical computer scientists, and graduate students interested in fields related to probability theory, ergodic theory, symbolic and topological dynamics. The courses were on: -Some Aspects of Random Fragmentations in Continuous Times; -Metastability of Ageing in Stochastic Dynamics; -Algebraic Systems of Generating Functions and Return Probabilities for Random Walks; -Recurrent Measures and Measure Rigidity; -Stochastic Particle Approximations for Two-Dimensional Navier Stokes Equations; and -Random and Universal Metric Spaces. The intended audience for this book is Ph.D. students on Probability and Ergodic Theory as well as researchers in these areas. The particular interest of this book is the broad areas of problems that it covers. We have chosen six main topics and asked six experts to give an introductory course on the subject touching the latest advances on each problem.




Instabilities and Nonequilibrium Structures V


Book Description

This volume contains a selection of the lectures given at the Fifth International Workshop on Instabilities and Nonequilibrium Structures, held in Santiago, Chile, in December 1993. The following general subjects are covered: instabilities and pattern formation, stochastic effects in nonlinear systems, nonequilibrium statistical mechanics and granular matter. Review articles on transitions between spatio-temporal patterns and nonlinear wave equations are also included. Audience: This book should appeal to physicists and mathematicians working in the areas of nonequilibrium systems, dynamical systems, pattern formation and partial differential equations. Chemists and biologists interested in self-organization and statistical mechanics should also be interested, as well as engineers working in fluid mechanics and materials science.




Complex Systems


Book Description

This volume contains the courses given at the Sixth Summer School on Complex Systems held at Facultad de Ciencias Fisicas y Maternaticas, Universidad de Chile at Santiago, Chile, from 14th to 18th December 1998. This school was addressed to graduate students and researchers working on areas related with recent trends in Complex Systems, including dynamical systems, cellular automata, complexity and cutoff in Markov chains. Each contribution is devoted to one of these subjects. In some cases they are structured as surveys, presenting at the same time an original point of view and showing mostly new results. The paper of Pierre Arnoux investigates the relation between low complex systems and chaotic systems, showing that they can be put into relation by some re normalization operations. The case of quasi-crystals is fully studied, in particular the Sturmian quasi-crystals. The paper of Franco Bagnoli and Raul Rechtman establishes relations be tween Lyapunov exponents and synchronization processes in cellular automata. The principal goal is to associate tools, usually used in physical problems, to an important problem in cellularautomata and computer science, the synchronization problem. The paper of Jacques Demongeot and colleagues gives a presentation of at tractors of dynamical systems appearing in biological situations. For instance, the relation between positive or negative loops and regulation systems.




Dynamics and Randomness


Book Description

This book contains the lectures given at the Conference on Dynamics and Randomness held at the Centro de Modelamiento Matematico of the Universidad de Chile from December 11th to 15th, 2000. This meeting brought together mathematicians, theoretical physicists and theoretical computer scientists, and graduate students interested in fields re lated to probability theory, ergodic theory, symbolic and topological dynam ics. We would like to express our gratitude to all the participants of the con ference and to the people who contributed to its organization. In particular, to Pierre Collet, Bernard Host and Mike Keane for their scientific advise. VVe want to thank especially the authors of each chapter for their well prepared manuscripts and the stimulating conferences they gave at Santiago. We are also indebted to our sponsors and supporting institutions, whose interest and help was essential to organize this meeting: ECOS-CONICYT, FONDAP Program in Applied Mathematics, French Cooperation, Fundacion Andes, Presidential Fellowship and Universidad de Chile. We are grateful to Ms. Gladys Cavallone for their excellent work during the preparation of the meeting as well as for the considerable task of unifying the typography of the different chapters of this book.




Instabilities and Nonequilibrium Structures IV


Book Description

We have classified the articles presented here in two Sections according to their general content. In Part I we have included papers which deal with statistical mechanics, math ematical aspects of dynamical systems and sthochastic effects in nonequilibrium systems. Part II is devoted mainly to instabilities and self-organization in extended nonequilibrium systems. The study of partial differential equations by numerical and analytic methods plays a great role here and many works are related to this subject. Most recent developments in this fascinating and rapidly growing area are discussed. PART I STATISTICAL MECHANICS AND RELATED TOPICS NONEQUILIBRIUM POTENTIALS FOR PERIOD DOUBLING R. Graham and A. Hamm Fachbereich Physik, Universitiit Gesamthochschule Essen D4300 Essen 1 Germany ABSTRACT. In this lecture we consider the influence of weak stochastic perturbations on period doubling using nonequilibrium potentials, a concept which is explained in section 1 and formulated for the case of maps in section 2. In section 3 nonequilibrium potentials are considered for the family of quadratic maps (a) at the Feigenbaum 'attractor' with Gaussian noise, (b) for more general non Gaussian noise, and (c) for the case of a strange repeller. Our discussion will be informal. A more detailed account of this and related material can be found in our papers [1-3] and in the reviews [4, 5], where further references to related work are also given. 1.




From Collective Beings to Quasi-Systems


Book Description

This book outlines a possible future theoretical perspective for systemics, its conceptual morphology and landscape while the Good-Old-Fashioned-Systemics (GOFS) era is still under way. The change from GOFS to future systemics can be represented, as shown in the book title, by the conceptual change from Collective Beings to Quasi-systems. With the current advancements, problems and approaches occurring in contemporary science, systemics are moving beyond the traditional frameworks used in the past. From Collective Beings to Coherent Quasi-Systems outlines a conceptual morphology and landscape for a new theoretical perspective for systemics introducing the concept of Quasi-systems. Advances in domains such as theoretical physics, philosophy of science, cell biology, neuroscience, experimental economics, network science and many others offer new concepts and technical tools to support the creation of a fully transdisciplinary General Theory of Change. This circumstance requires a deep reformulation of systemics, without forgetting the achievements of established conventions. The book is divided into two parts. Part I, examines classic systemic issues from new theoretical perspectives and approaches. A new general unified framework is introduced to help deal with topics such as dynamic structural coherence and Quasi-systems. This new theoretical framework is compared and contrasted with the traditional approaches. Part II focuses on the process of translation into social culture of the theoretical principles, models and approaches introduced in Part I. This translation is urgent in post-industrial societies where emergent processes and problems are still dealt with by using the classical or non-systemic knowledge of the industrial phase.




The Physics of Complex Systems


Book Description

It is widely known that complex systems and complex materials comprise a major interdisciplinary scientific field that draws on mathematics, physics, chemistry, biology, and medicine as well as such social sciences as economics. The role of statistical physics in this new field has been expanding. Statistical physics has shown how phenomena and processes in different research areas that have long been assumed to be unrelated can have a common description. Through the application of statistical physics, methods developed for studying order phenomena in simple systems and processes have been generalized to more complex systems. This volume focuses on recent advances and perspectives in the physics of complex systems and provides both an overview of the field and a more detailed examination of the new ideas and unsolved problems that are currently attracting the attention of researchers. This book should be a useful reference work for anyone interested in this area, whether beginning graduate student or advanced research professional. It provides up-to-date reviews on cutting-edge topics compiled by leading authorities and is designed to both broaden the reader's competence within their own field and encourage the exploration of new problems in related fields.




Nonlinear Dynamics of Chaotic and Stochastic Systems


Book Description

We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.