Insulation/circuits


Book Description

Includes a special annual issue: Insulation/circuits directory/encyclopedia.




Electrical Insulation for Rotating Machines


Book Description

A single comprehensive resource for the design, application, testing, and maintenance of rotating machines Filling a long-standing gap in the field, Electrical Insulation for Rotating Machines covers, in one useful volume, all aspects of the design, deterioration, testing, and repair of the electrical insulation used in motors and generators. Lucidly written by leading experts, this authoritative reference provides both historical background important to understanding machine insulation design and the most up-to-date information on new machines and how to select insulation systems for them. Coverage includes such key topics as: Types of rotating machines, windings, and rotor and stator winding construction Evaluating insulation materials and systems Stator winding and rotor winding insulation systems in current use Failure mechanisms and repair Testing and monitoring Maintenance strategies Detailing over 30 different rotor and stator winding failure processes and reviewing almost 25 different tests and monitors used to assess winding insulation condition, Electrical Insulation for Rotating Machines will help machine users avoid unnecessary machine failures, reduce maintenance costs, and inspire greater confidence in the design of future machines.




Electrical Insulation for Rotating Machines


Book Description

A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past “art” in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines.










The Electrical Engineering Handbook,Second Edition


Book Description

In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.




Electrical Installations


Book Description

Adopting a practical approach, this resource provides coverage of the theory underpinning the NVQ.




The Electrical Engineering Handbook


Book Description

The Electrical Engineer's Handbook is an invaluable reference source for all practicing electrical engineers and students. Encompassing 79 chapters, this book is intended to enlighten and refresh knowledge of the practicing engineer or to help educate engineering students. This text will most likely be the engineer's first choice in looking for a solution; extensive, complete references to other sources are provided throughout. No other book has the breadth and depth of coverage available here. This is a must-have for all practitioners and students! The Electrical Engineer's Handbook provides the most up-to-date information in: Circuits and Networks, Electric Power Systems, Electronics, Computer-Aided Design and Optimization, VLSI Systems, Signal Processing, Digital Systems and Computer Engineering, Digital Communication and Communication Networks, Electromagnetics and Control and Systems.About the Editor-in-Chief...Wai-Kai Chen is Professor and Head Emeritus of the Department of Electrical Engineering and Computer Science at the University of Illinois at Chicago. He has extensive experience in education and industry and is very active professionally in the fields of circuits and systems. He was Editor-in-Chief of the IEEE Transactions on Circuits and Systems, Series I and II, President of the IEEE Circuits and Systems Society and is the Founding Editor and Editor-in-Chief of the Journal of Circuits, Systems and Computers. He is the recipient of the Golden Jubilee Medal, the Education Award, and the Meritorious Service Award from the IEEE Circuits and Systems Society, and the Third Millennium Medal from the IEEE. Professor Chen is a fellow of the IEEE and the American Association for the Advancement of Science.* 77 chapters encompass the entire field of electrical engineering.* THOUSANDS of valuable figures, tables, formulas, and definitions.* Extensive bibliographic references.




Design of Rotating Electrical Machines


Book Description

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This book enables you to design rotating electrical machines with its detailed step-by-step approach to machine design and thorough treatment of all existing and emerging technologies in this field. Senior electrical engineering students and postgraduates, as well as machine designers, will find this book invaluable. In depth, it presents the following: Machine type definitions; different synchronous, asynchronous, DC, and doubly salient reluctance machines. An analysis of types of construction; external pole, internal pole, and radial flux machines. The properties of rotating electrical machines, including the insulation and heat removal options. Responding to the need for an up-to-date reference on electrical machine design, this book includes exercises with methods for tackling, and solutions to, real design problems. A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Classroom tested material and numerous graphs are features that further make this book an excellent manual and reference to the topic.