Integral Equation Methods for Electromagnetic and Elastic Waves


Book Description

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms




Integral Equation Methods for Electromagnetic and Elastic Waves


Book Description

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms




The Nystrom Method in Electromagnetics


Book Description

A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.




Electromagnetic Scattering: A Remote Sensing Perspective


Book Description

Remote sensing is a fast-growing field with many important applications as demonstrated in the numerous scientific missions of the Earth Observation System (EOS) worldwide. Given the inter-disciplinary nature of remote sensing technologies, the fulfillment of these scientific goals calls for, among other things, a fundamental understanding of the complex interaction between electromagnetic waves and the targets of interest.Using a systematic treatment, Electromagnetic Scattering: A Remote Sensing Perspective presents some of the recently advanced methods in electromagnetic scattering, as well as updates on the current progress on several important aspects of such an interaction. The book covers topics including scattering from random rough surfaces of both terranean and oceanic natures, scattering from typical man-made targets or important canonical constituents of natural scenes, such as a dielectric finite cylinder or dielectric thin disk, the characterization of a natural scene as a whole represented as a random medium, and the extraction of target features with a polarimetric radar.




Parabolic Equation Methods for Electromagnetic Wave Propagation


Book Description

Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR







Boundary Elements and other Mesh Reduction Methods XLI


Book Description

Containing the proceedings from the 41st conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), this book is a collection of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences.




Introduction to Microwave Imaging


Book Description

A one-stop tutorial for beginners covering the fundamentals of microwave imaging, including application examples and practical exercises.




Boundary Elements and Other Mesh Reduction Methods


Book Description

Formed of presented papers this volume contains research from the 40th International Conference on Boundary Elements and other Mesh Reduction Methods, recognised as THE international forum for the latest advances in these techniques and their applications in science and engineering. The ongoing success of this series is a result of the strength of research being carried out all over the world and the coverage has continually evolved in line with the latest developments in the field. The books originating from this conference series constitute a record of the development of BEM/MRM, running from the initial successful development of boundary integral techniques into the boundary element method, a technique that eliminates the need for an internal mesh, to the recent and most sophisticated Mesh Reduction and even Meshless Methods. Since these methods are used in many engineering and scientific fields the 2017 book, Boundary Elements and other Mesh Reduction Methods XXXX, like the series before, will be of great interest to those working within the areas of numerical analysis, boundary elements and meshless methods. The research papers included in this volume cover: Advanced formulations; Advanced meshless and mesh reduction methods; Structural mechanics applications; Solid mechanics; Heat and mass transfer; Electrical engineering and electromagnetics; Computational methods; Fluid flow modelling; Damage mechanics and fracture; Dynamics and vibrations; Engineering applications; Interfacing with other methods; Coupling with design and manufacturing; Solution of large systems of equations.




Computational Methods for Electromagnetic Phenomena


Book Description

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: • Statistical fluctuation formulae for the dielectric constant • Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions • High-order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots • Absorbing and UPML boundary conditions • High-order hierarchical Nédélec edge elements • High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods • Finite element and plane wave frequency-domain methods for periodic structures • Generalized DG beam propagation method for optical waveguides • NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport • High-order WENO and Godunov and central schemes for hydrodynamic transport • Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas